Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Magnetic swirls

Physicists of the Forschungszentrum Dresden-Rossendorf investigated an unusual arrangement of three magnetic “swirls” - so called magnetic vortices - in a thin magnetic film. Their experiments performed at the Swiss Light Source (Switzerland) unravelled the dynamic core movements of these magnetic swirls for the first time. The results were published in the journal “Physical Review Letters” recently.

The 2007 physics Nobel Prize awarded achievements in the field of magnetism. When they started their fundamental research, the laureates Albert Fert and Peter Grünberg did certainly not foresee in how little time their results would be used for everyday applications in computer hard disks’ drives.

Dr. Karsten Küpper and Dr. Jürgen Fassbender from the Forschungszentrum Dresden-Rossendorf (FZD) tackle similar fundamental questions concerning the physics of magnetism whose potential applications are unpredictable today. More precisely, they study magnetic vortices, which are like magnetic swirls on the nanoscale (one nanometer is the billionth part of a meter). These magnetic cores, located in the center of the magnetic swirl, have a size of only about 10 nanometers and a very stable magnetization. Hence, experts consider them as potential candidates for future non volatile magnetic memories.

Today researchers study the basic physical phenomena of magnetic vortices, observed experimentally for the first time only a few years ago. A vortex can be described as a round, thin ferromagnetic disc with a diameter of only a few micrometers showing a circular magnetization, to some extent similar to the wind in a tornado. In the center of the disk a very small core of about 20 atoms only exhibits a perpendicular magnetization (like the eye of a tornado storm points towards the earth). Applying a magnetic field to a magnetic vortex pushes the vortex away from the center of the disk towards the frame. If one then turns the field off abruptly, the vortex moves either clockwise or counter clockwise on a spiral like trajectory back into its initial position in the center of the disk. This special movement is called gyration. In principal, the perpendicular magnetization of the vortex core can point either upwards or downwards, and four different kinds of movement can be found: right- and left rotating magnetic swirls, combined either with an up- or downward directed perpendicular core magnetization.

Analogous to any other physical particle or particle like property one can find an anti-particle, i.e. an antivortex in the present case. The physicists of the FZD could now tackle the dynamic magnetic properties of two vortices and an antivortex, i.e. the movement of the three cores in response to a short magnetic field pulse. Usually a vortex and an antivortex annihilate immediately under emission of energy. However, two vortices located around an antivortex can built up a pretty stable micromagnetic unit, a so called single cross-tie wall. The experiments concerning the magnetization dynamics and the subsequent core movements were performed at the Swiss Light Source of the Paul Scherrer Institute in Switzerland. Fundamental questions were the driving force for these investigations: How do the two vortices and the antivortex influence the dynamic properties of the overall structure and the movement of the cores themselves? Do antivortex and vortices attract or repel each other in this specific arrangement? Are the subsequent spiral motions of the cores amplified or damped? Are other components of the overall cross-tie like the domain walls important for the overall dynamics?

Dr. Jürgen Fassbender sums up the outcome: “We could study some intriguing effects, in particular the gyrating movement of an antivortex has not been investigated experimentally so far. Due to comparison with complementary simulations we now understand details of the dynamic interaction between the three cores. Furthermore we could unravel the orientation of the three cores via analyzing their movements, although the lateral resolution of the used microscope is not high enough to extract the core orientation directly.”

What’s next? Dr. Jürgen Fassbender’s nanomagnetism team is now ready for its new challenge: to create a single antivortex and to experimentally investigate the magnetization dynamics of it for the first time. All this will certainly help in understanding the magnetization dynamics of even more complex micromagnetic structures, which might lay the basis for unforseen technological advances in the future.

Christine Bohnet | alfa
Further information:

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

Science & Research
Overview of more VideoLinks >>>