Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quantum simulator becomes accessible to the world

Experimental physicists have put a lot of effort in isolating sensitive measurements from the disruptive influences of the environment.

In an international first, Austrian quantum physicists have realized a toolbox of elementary building blocks for an open-system quantum simulator, where a controlled coupling to an environment is used in a beneficial way. This offers novel prospects for studying the behavior of highly complex quantum systems. The researchers have published their work in the scientific journal Nature.

An ion interacts with the quantum system and, at the same time, establishes a controlled contact to the environment. Graphics: Harald Ritsch

Many phenomena in our world are based on the nature of quantum physics: the structure of atoms and molecules, chemical reactions, material properties, magnetism and possibly also certain biological processes. Since the complexity of phenomena increases exponentially with more quantum particles involved, a detailed study of these complex systems reaches its limits quickly; and conventional computers fail when calculating these problems. To overcome these difficulties, physicists have been developing quantum simulators on various platforms, such as neutral atoms, ions or solid-state systems, which, similar to quantum computers, utilize the particular nature of quantum physics to control this complexity. In a special issue at the end of 2010, the scientific journal Science chose the progress made in this field as one of the scientific breakthroughs of the year 2010.

In another breakthrough in this field, a team of young scientists in the research groups of Rainer Blatt and Peter Zoller at the Institute for Experimental Physics and Theoretical Physics of the University of Innsbruck and the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences have been the first to engineer a comprehensive toolbox for an open-system quantum computer, which will enable researchers to construct more sophisticated quantum simulators for investigating complex problems in quantum physics.

Using controlled dissipation
The physicists use a natural phenomenon In their experiments that they usually try to minimize as much as possible: environmental disturbances. Such disturbances usually cause information loss in quantum systems and destroy fragile quantum effects such as entanglement or interference. In physics this deleterious process is called dissipation. Innsbruck researchers, led by experimental physicists Julio Barreiro and Philipp Schindler as well as the theorist Markus Müller, have now been first in using dissipation in a quantum simulator with trapped ions in a beneficial way and engineered system-environment coupling experimentally. “We not only control all internal states of the quantum system consisting of up to four ions but also the coupling to the environment,” explains Julio Barreiro. “In our experiment we use an additional ion that interacts with the quantum system and, at the same time, establishes a controlled contact to the environment,“ explains Philipp Schindler. The surprising result is that by using dissipation, the researchers are able to generate and intensify quantum effects, such as entanglement, in the system. “We achieved this by controlling the disruptive environment,“ says an excited Markus Müller.
Putting the quantum world into order
In one of their experiments the researchers demonstrate the control of dissipative dynamics by entangling four ions using the environment ion. “Contrary to other common procedures this also works irrespective of the initial state of each particle,” explains Müller. “Through a collective cooling process, the particles are driven to a common state.“ This procedure can be used to prepare many-body states, which otherwise could only be created and observed in an extremely well isolated quantum system. The beneficial use of an environment allows for the realization of new types of quantum dynamics and the investigation of systems that have scarcely been accessible for experiments until now. In the last few years there has been continuous thinking about how dissipation, instead of suppressing it, could be actively used as a resource for building quantum computers and quantum memories. Innsbruck theoretical and experimental physicists cooperated closely and they have now been the first to successfully implement these dissipative effects in a quantum simulator.

The Innsbruck researchers are supported by the Austrian Science Fund (FWF), the European Commission and the Federation of Austrian Industries Tyrol.

Publication: An Open-System Quantum Simulator with Trapped Ions. Julio T. Barreiro, Markus Müller, Philipp Schindler, Daniel Nigg, Thomas Monz, Michael Chwalla, Markus Hennrich, Christian F. Roos, Peter Zoller und Rainer Blatt. Nature 2011.

DOI: 10.1038/nature09801

Julio Barreiro
Institute for Experimental Physics
University of Innsbruck
Phone: +43 512 507-6321
Christian Roos
Institute for Quantum Optics and Quantum Information (IQOQI)
Austrian Academy of Sciences
Phone: +43 512 507-4728
Christian Flatz
Public Relations
University of Innsbruck
Phone: +43 650 5777122
Weitere Informationen: - An Open-System Quantum Simulator with Trapped Ions. Julio T. Barreiro, Markus Müller, Philipp Schindler, Daniel Nigg, Thomas Monz, Michael Chwalla, Markus Hennrich, Christian F. Roos, Peter Zoller und Rainer Blatt. Nature 2011.

Dr. Christian Flatz | Universität Innsbruck
Further information:

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Science & Research
Overview of more VideoLinks >>>