Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Simulation 2.0: Atoms Chat Long Distance

08.04.2016

In an international first, a research team of experimental physicists led by Francesca Ferlaino and theoretical physicists led by Peter Zoller has measured long-range magnetic interactions between ultracold particles confined in an optical lattice. Their work, published in Science, introduces a new control knob to quantum simulation.

Simulations are a popular tool to study physical processes that cannot be investigated experimentally in detail. For example, scientists are challenged to investigate physical processes in materials since their properties are determined by the interactions of single particles, which are hardly measurable directly.


By using a magnetic field physicists are able to directly change the direction of the mini magnets and precisely control how the particles interact – attracting or repelling each other.

Erbium team/Simon Baier

Conventional computers quickly reach their limits when dealing with these complex simulations. At the beginning of the 1980s, Richard Feynman proposed to simulate these processes in a quantum system to overcome this obstacle.

Two decades later, Ignacio Cirac and Peter Zoller presented concrete concepts of how quantum processes could be studied by using ultracold atoms confined in optical lattices. In the last few years, this approach has proven itself in practice and is now broadly applied in experiments.

“We are able to control ultracold particles well in experiments and this has provided us with new insights into physical properties,” says Francesca Ferlaino from the Institute for Experimental Physics of the University of Innsbruck and the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences.

In collaboration with Peter Zoller’s team of theoretical physicists, her research team has now extended this approach for quantum simulations and laid the groundwork for future new research: For the first time, the physicists were able to quantitatively measure long-range interactions between magnetic atoms in optical lattices.

Experimental tool box for matter

Many studies have focused on the investigation of the interaction of short-range particles. “In contrast, we are working with strongly magnetic atoms, which can also interact over long distances,” says co-author Manfred Mark. For their experiment the physicists prepared an ultracold gas of erbium atoms – a Bose-Einstein condensate – in a three dimensional optical lattice of laser beams.

In this simulated solid-body crystal, the particles were arranged similar to eggs in a carton. The distance between the particles was seven times their wave function in the Innsbruck experiment. “By using a magnetic field we are able to directly change the direction of the mini magnets and precisely control how the particles interact – attracting or repelling each other,” explains first author Simon Baier.

A search for exotic quantum phases

“Our collaboration with Zoller, Cai Zi and Mikhail Baranov was indispensable for understanding our measurement results comprehensively,” underlines Francesca Ferlaino. “Our work is another important step towards a better understanding of quantum matter of dipolar atoms because their nature is a lot more complex than the atoms used for ultracold quantum gases in other experiments.”

The research results also lay the groundwork for future studies of novel exotic many-body quantum phases such as checkerboard and stripe phases, which may be created by long-range interactions. “Our study opens the door to finally being able to measure these type of phases,” says Simon Baier, who is already looking into the future. “In principle, we should be able to do this in our experiments as well but we will need to cool the atoms even further from currently 70nK to approximately 2nK.”

The research is supported by the Austrian Science Fund (FWF) and the European Research Council (ERC) among others.

Publication: Extended Bose-Hubbard models with ultracold magnetic atoms. S. Baier, M. J. Mark, D. Petter, K. Aikawa, L. Chomaz, Z. Cai, M. Baranov, P. Zoller, F. Ferlaino. Science 2016
DOI: 10.1126/science.aac9812

Contact:
Univ.-Prof. Dr. Francesca Ferlaino
Institute for Experimental Physics
University of Innsbruck
Phone: +43 676 872552440
Email: francesca.ferlaino@uibk.ac.at
Web: http://www.erbium.at

Dr. Christian Flatz
Public Relations Office
University of Innsbruck
Phone: +43 512 507 32022
Cell: +43 676 872532022
Email: christian.flatz@uibk.ac.at

Weitere Informationen:

http://www.erbium.at - Dipolar Quantum Gas Group
http://iqoqi.at - Institute of Quantum Optics and Quantum Information
http://www.uibk.ac.at/exphys/ - Department of Experimental Physics, University of Innsbruck

Dr. Christian Flatz | Universität Innsbruck

Further reports about: Experimental Physics QUANTUM Simulation magnetic atoms

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>