Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Quantum Cascade Lasers Emit More Light Than Heat

12.01.2010
Northwestern University researchers have developed compact, mid-infrared laser diodes that generate more light than heat — a breakthroughs in quantum cascade laser efficiency.

The results are an important step toward use of quantum cascade lasers in a variety of applications, including remote sensing of hazardous chemicals.

The research, led by Manijeh Razeghi, the Walter P. Murphy Professor of Electrical Engineering and Computer Science at the McCormick School of Engineering and Applied Science, was published online in the journal Nature Photonics on Jan. 10.

After years of research and industrial development, modern laser diodes in the near-infrared (approximately 1 micron) wavelength range are now extremely efficient. However the mid-infrared (greater than 3 microns) is much more difficult to access and has required the development of new device architectures.

The quantum cascade laser (QCL) is a diode laser that is designed on the quantum mechanical level to produce light at the desired wavelength with high efficiency. Unlike traditional diode lasers, the device is unipolar, requiring only electrons to operate. A significant effort has been spent trying to understand and optimize the electron transport, which would allow researchers to improve the laser quality and efficiency.

Despite the special nature of these devices, laser wafer production is done using standard compound semiconductor growth equipment. By optimizing the material quality in these standard tools, researchers at the Center for Quantum Devices (CQD) at Northwestern, led by Razeghi, have made significant breakthroughs in QCL performance.

Previous reports regarding QCLs with high efficiency have been limited to efficiency values of less than 40 percent, even when cooled to cryogenic temperatures.

After removing design elements unnecessary for low-temperature operation, researchers at CQD have now demonstrated individual lasers emitting at wavelengths of 4.85 microns with efficiencies of 53 percent when cooled to 40 Kelvin.

“This breakthrough is significant because, for the very first time, we are able to create diodes that produce more light than heat,” says Razeghi. “Passing the 50 percent mark in efficiency is a major milestone, and we continue to work to optimize the efficiency of these unique devices.”

Though efficiency is currently the primary goal, the large demonstrated efficiencies also can be exploited to enable power scaling of the QCL emitters. Recent efforts in broad area QCL development have allowed demonstration of individual pulsed lasers with record output powers up to 120 watts, which is up from 34 watts only a year ago.

This work is being partially supported by the Defense Advanced Research Projects Agency’s Efficient Mid-Infrared Laser (EMIL) program. Additional funding is being provided by the Office of Naval Research.

Kyle Delaney | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>