Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planetologists explain how the formation of the moon brought water to Earth

21.05.2019

As the only terrestrial planet, the Earth has a large amount of water and a relatively large moon, which stabilizes the Earth's axis. Both are essential for life to develop on Earth. Planetologists from the University of Münster have now been able to show for the first time that water came to Earth with the formation of the Moon some 4.4 billion years ago. The results are published in the current issue of the journal "Nature Astronomy".

The Earth is unique in our solar system: It is the only terrestrial planet with a large amount of water and a relatively large moon, which stabilizes the Earth's axis. Both were essential for Earth to develop life. Planetologists at the University of Münster have now been able to show, for the first time, that water came to Earth with the formation of the Moon some 4.4 billion years ago.


The rising Earth from the perspective of the moon

NASA Goddard

The Moon was formed when Earth was hit by a body about the size of Mars, also called Theia. Until now, scientists had assumed that Theia originated in the inner solar system near the Earth.

However, researchers from Münster can now show that Theia comes from the outer solar system, and it delivered large quantities of water to Earth. The results are published in the current issue of "Nature Astronomy".

From the outer into the inner solar system

The Earth formed in the 'dry' inner solar system, and so it is somewhat surprising that there is water on Earth. To understand why this the case, we have to go back in time when the solar system was formed about 4.5 billion years ago.

From earlier studies, we know that the solar system became structured such that the ‘dry’ materials were separated from the ‘wet’ materials: the so-called 'carbonaceous' meteorites, which are relatively rich in water, come from the outer solar system, whereas the drier 'non-carbonaceous' meteorites come from the inner solar system.

While previous studies have shown that carbonaceous materials were likely responsible for delivering the water to Earth, it was unknown when and how this carbonaceous material - and thus the water - came to Earth.

"We have used molybdenum isotopes to answer this question. The molybdenum isotopes allow us to clearly distinguish carbonaceous and non-carbonaceous material, and as such represent a 'genetic fingerprint' of material from the outer and inner solar system," explains Dr. Gerrit Budde of the Institute of Planetology in Münster and lead author of the study.

The measurements made by the researchers from Münster show that the molybdenum isotopic composition of the Earth lies between those of the carbonaceous and non-carbonaceous meteorites, demonstrating that some of Earth's molybdenum originated in the outer solar system. In this context, the chemical properties of molybdenum play a key role because, as it is an iron-loving element, most of the Earth's molybdenum is located in the core.

"The molybdenum which is accessible today in the Earth's mantle, therefore, originates from the late stages of Earth's formation, while the molybdenum from earlier phases is entirely in the core," explains Dr. Christoph Burkhardt, second author of the study. The scientists’ results therefore show, for the first time, that carbonaceous material from the outer solar system arrived on Earth late.

But the scientists are going one step further. They show that most of the molybdenum in Earth's mantle was supplied by the protoplanet Theia, whose collision with Earth 4.4 billion years ago led to the formation of the Moon. However, since a large part of the molybdenum in Earth's mantle originates from the outer solar system, this means that Theia itself also originated from the outer solar system.

According to the scientists, the collision provided sufficient carbonaceous material to account for the entire amount of water on Earth. "Our approach is unique because, for the first time, it allows us to associate the origin of water on Earth with the formation of the Moon. To put it simply, without the Moon there probably would be no life on Earth," says Thorsten Kleine, Professor of Planetology at the University of Münster.

The work was carried out within the framework of the Collaborative Research Centre/Transregio (TRR) 170 "Late accretion onto terrestrial planets" and was supported by the German Research Foundation (DFG) and the European Research Council (ERC, contract 616564).
This study was supported by the European Research Council Consolidator Grant “ISOCORE” (contract 616564) and by the Deutsche Forschungsgemeinschaft (SFB/TRR 170 subproject B3-1).

Originalpublikation:

Gerrit Budde, Christoph Burkhardt und Thorsten Kleine (2019): Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nature Astronomy, doi: 10.1038/s41550-019-0779-y.

Weitere Informationen:

https://www.nature.com/articles/s41550-019-0779-y Original publication in "Nature Astronomy"

https://www.uni-muenster.de/news/view.php?cmdid=10278 Press release on the website of Münster University

Dr. Kathrin Kottke | idw - Informationsdienst Wissenschaft

Further reports about: Moon Planetology astronomy isotopes meteorites molybdenum solar system

More articles from Physics and Astronomy:

nachricht Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

nachricht Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>