Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NUS engineers develop novel method for resolving spin texture of topological surface states using transport measurements

27.04.2018

All-electric measurement of spin texture used for spin current generation will contribute to easier and cheaper way of developing spintronic devices

The magneto-resistance effect is the tendency of a material to change the value of its electrical resistance in an externally-applied magnetic field. It has been widely utilised for applications in sensors and hard disk reading heads.


Figure: (a) Schematic diagram illustrating the Dirac cone of a topological insulator. (b) Spin-momentum locked surface state with hexagonal warping. (c,d) Hall bar device of topological insulator Bi2Se3 for harmonic resistance measurements. (e) Second harmonic resistance signal for the three scans of magnetic fields in xy, zy, and zx planes.

Credit: National University of Singapore

So far, no link has been established between the existing magneto-resistances and spin texture of spin-polarised materials. Researchers from the National University of Singapore (NUS) have recently made a breakthrough in this field, revealing a close relation between the spin texture of topological surface states (TSS) and a new kind of magneto-resistance.

This fundamental advancement is achieved in collaboration with researchers from the University of Missouri, United States. The research team observed for the first time a novel magneto-resistance in three-dimensional (3D) topological insulators (TIs), which scales linearly with both the applied electric and magnetic fields, and shows a close link to the in-plane and out-of-plane spin textures of TSS. The team's finding could help in addressing the issue of spin current source selection often faced in the development of spintronic devices.

The research team, led by Associate Professor Yang Hyunsoo from the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering, published their findings in the journal Nature Physics.

New magneto-resistance found in 3D TI

The discovery of 3D TIs has generated great interest among international researchers to understand the physical properties of this new state of matter, and exploring its applications in optoelectronics and spintronics. So far, the magneto-resistances found in 3D TIs is current-independent, reflecting a linear response of the electron transport to an applied electric field. At the same time, a transport obstacle exists in detecting the surface properties, due to the significant bulk contribution, which overwhelms the surface responses.

"In this work, we observed the second order nonlinear magneto-resistance in a prototypical 3D TI Bi2Se3 films, and showed that it is sensitive to TSS. In contrast with conventional magneto-resistances, this new magneto-resistance shows a linear dependence on both the applied electric and magnetic fields," said Dr He Pan, who is the first author of the study and a Research Fellow at the Department.

Assoc Prof Yang added, "Theoretical calculations by our collaborators from the University of Missouri revealed that the bilinear magneto-electric resistance originates from the spin-momentum locked TSS with hexagonal warping. From the perspective of the microscopic origin, it is a fundamentally new process regarding the conversion of a nonlinear spin current into a charge current under the external magnetic field."

Novel technique to probe 3D spin texture

Probing the surface spin texture is of critical importance for the development of TI-based spintronic devices. However, the approach performed to date is highly restricted to sophisticated tools such as photoemission spectroscopy.

The novel magneto-electric resistance observed by the research team provides a new route to detect the 3D spin texture in TSS by a simple electric transport measurement without involving any additional ferromagnetic layers. The team's study also revealed the hexagonal warping effect in TSS, which could previously only be determined by photoemission spectroscopy.

Commenting on the significance of the breakthrough, Dr He Pan said, "Our results can be applied to extended families of highly spin-polarised materials, like Rashba/Dresselhaus systems as well as two-dimensional transition metal dichalcogenides with spin-polarised states. It also provides a new route to detect the 3D spin texture of these materials by a simple transport measurement."

Next steps

Moving forward, Assoc Prof Yang and his team are conducting experiments to increase the magnitude of the novel magneto-resistance by refining the TI materials and film thickness. They are also planning to incorporate and test the technology in different materials. The team hopes to work with industry partners to explore various applications with the novel magneto-resistance.

###

This research work was supported by A*STAR's Pharos Programme.

Media Contact

Goh Yu Chong
yuchong.goh@nus.edu.sg
656-601-1653

 @NUSingapore

http://www.nus.edu.sg/ 

Goh Yu Chong | EurekAlert!

Further reports about: 3D Engineering magnetic field photoemission spectroscopy spintronic devices

More articles from Physics and Astronomy:

nachricht Liquid crystals in nanopores produce a surprisingly large negative pressure
25.04.2019 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht New robust device may scale up quantum tech, researchers say
25.04.2019 | Purdue University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>