Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear condensation

22.12.2008
The excited energy state of an oxygen nucleus could consist of a condensate of alpha particles

Our understanding of the electronic structure of atoms has changed very little since the development of quantum mechanics almost three-quarters of a century ago.

And with the completion of the Large Hadron Collider at CERN, Switzerland, it is expected that the final elements of the Standard Model of particle physics will soon be confirmed. Yet, surprisingly little is known about the behavior of atomic nuclei at the scale between atoms and subatomic particles.

To better understand the processes that determine the behavior of atomic nuclei, Yasuro Funaki of the RIKEN Nishina Center for Accelerator-Based Science, Wako, and his colleagues in Japan, Germany and France, have performed state-of-the-art calculations to test the theory that the particles within an oxygen nucleus could coalesce together to form an unusual quantum state of low nuclear density, known as a Bose–Einstein condensate (1).

The protons and neutrons of an atomic nucleus in its lowest energy state are believed behave in a manner similar to molecules of a simple liquid with no defined structure (Fig. 1a). At energies above the ground state, however, some order can emerge. The protons and neutrons within a carbon-12 nucleus, for example, can arrange into tightly bound clusters of three alpha-particles, consisting of two protons and two neutrons each. Such clustering plays an important role in the creation of elements in stars, and is believed to be the principle means by which carbon nuclei form.

In previous work, Funaki and colleagues investigated the mechanisms by which the alpha-particles within a carbon-12 nucleus might interact (2). As well as confirming the formation of an excited state consisting of three alpha particles with a nuclear density four times lower than the ground state, their calculations suggested that these particles might themselves coalesce into a Bose–Einstein condensate.

In this unusual form of matter, the constituent particles of a system all occupy exactly the same quantum state. Bose–Einstein condensates are mostly commonly observed to emerge when a dilute atomic gas of certain elements is cooled to a temperature close to absolute zero. Although this state was predicted early last century, and demonstrated in 1995, it was only suggested recently that it might arise within atomic nuclei and other nuclear systems, such as collapsing stars.

In their latest work, the researchers turn their attention to oxygen-16, the next nucleus above carbon-12 to support a condensed system of alpha particles (Fig. 1b). Their calculations suggest that such a state forms at energies consistent with experimental observations.

Reference

1. Funaki, Y., Yamada, T., Horiuchi, H., Röpke, G., Schuck, P. & Tohsaki, A. α-particle condensation in 16O studied with a full four-body orthogonality condition model calculation. Physical Review Letters 101, 082502 (2008).

2. Funaki, Y., Tohsaki, A., Horiuchi, H., Schuck, P. & Röpke, G. Analysis of previous microscopic calculations for the second 0+ state in 12C in terms of 3-α particle Bose-condensed state. Physical Review C 67, 051306 (2003).

The corresponding author for this highlight is based at the RIKEN Theoretical Nuclear Physics Laboratory

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/599/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

nachricht NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate
18.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>