Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nonmagnetic elements form unique magnet

15.07.2015

Rice University scientists combine titanium and gold to make itinerant antiferromagnet

Titanium and gold are usually not magnetic and cannot be magnets - unless you combine them just so.


Measurements at Rice University show that a crystalline form of titanium and gold -- TiAu -- becomes magnetic (red peak) at a cold 36 kelvins, about minus 395 degrees Fahrenheit. The Rice lab discovered the material is the first known example of an itinerant antiferromagnet.

Credit: Eteri Svanidze/Rice University

Scientists at Rice University did so and discovered what is a first of its kind: an itinerant antiferromagnetic metal -- TiAu -- made from nonmagnetic constituent elements.

The research by the lab of Rice physicist Emilia Morosan has already been cited as a textbook example of how magnetism arises in metals. While the uses for this particular magnet have yet to be determined, the Rice discovery could enhance the scientific understanding of magnetism.

An open-access paper about the research appears this week in Nature Communications.

This is not the kind of magnet one would stick to a refrigerator. Magnetic order only appears in TiAu when the metal is cooled to 36 kelvins, about minus 395 degrees Fahrenheit.

"Magnetization is a function of temperature," said lead author Eteri Svanidze. "The magnet's ordering temperature appears as an anomaly in the smooth curve we see in such magnetization measurements." For common magnets, that temperature is generally hundreds of degrees Fahrenheit, way hotter than any kitchen. But the energy and temperature scale in unconventional magnets, like the few that have no magnetic elements, are drastically reduced.

Svanidze said the magnets will enhance studies of other important physics, like phase transitions (as in solid-to-liquid or liquid-to-gas) that take place at absolute zero, called quantum phase transitions.

TiAu is only the third known itinerant magnetic metal made with no magnetic elements. The other two, both ferromagnets that activate their magnetic order at temperatures even colder than TiAu, were discovered half a century ago. Part of the reason for the long gap is that TiAu is challenging to make.

"When we started looking, we found out why 50 years had passed without any additional discoveries," Morosan said. "Most other possible candidates were problematic in one way or another. They were hard to make, chemically unstable, toxic or required a high temperature that was not accessible in the lab."

"We had to discard many candidate compounds," said Svanidze, who worked on the project for six years as a Rice graduate student.

But electronic structure calculations showed a 1-to-1 mix of titanium and gold might have the properties they were looking for. "This is not a new material," Svanidze said. "What we found are its magnetic properties, and that's where the interesting physics comes in."

Materials usually become magnetic when exposed to a field that brings the magnetic moments of its atoms into alignment. Think of each atom or ion as a tiny self-contained magnet that can align itself with the neighboring magnetic ions, like the needle of a compass.

The magnetic moment of a material can be local (tied to a specific atom) or itinerant (not bonded to a single atom). Itinerant wanderers can extend their influence over more than one atom, facilitating communications between their "up" or "down" spin states. They also allow for handy things like electrical conductivity in metals.

Atomic moments in local-moment ferromagnets - that is, common magnetic materials - align all of their spins in the same direction. In an antiferromagnet, the atomic moments align in opposite directions.

Morosan said it's important to know these extremes in magnetic behavior. "Theoretically we understand local-moment magnetism quite well, and we have some understanding of the itinerant moment, but most true systems really live in between," she said. "We have to understand the extremes in order to figure out the physics of what's going on in between."

"I think the most significant part is that such a phenomenon is very rare," said Jiakui Wang, another Morosan lab graduate student and co-author of the paper. "This is the first time such an antiferromagnetic material has been discovered, so it is fundamentally significant. It makes our understanding of magnetism deeper."

Morosan said basic scientific discoveries often need time to spawn applications. "My hope is that we can eventually find enough of these systems to understand them better. Then we'll know what we're dealing with so we can make compounds with the exact properties we want."

Co-authors of the paper are Andriy Nevidomskyy, an assistant professor of physics and astronomy at Rice; Tiglet Besara and Theo Siegrist of the National High Magnetic Field Laboratory at Florida State University; Lian Liu, Benjamin Frandsen and Yasutomo Uemura of Columbia University; Quigzhen Huang and Jeffrey Lynn of the National Institute of Standards and Technology, Gaithersburg, Md.; and Monika Gamza and Meigan Aronson of Brookhaven National Laboratory. Morosan is a professor of physics and astronomy, of chemistry and of materials science and nanoengineering.

The research was supported by the National Science Foundation, the Air Force Office of Scientific Research Multidisciplinary University Research Initiative, the Welch Foundation, the Department of Energy, Florida State University, the Japan Atomic Energy Agency and the Friends of Todai Inc. Foundation.

David Ruth
713-348-6327
david@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

Read the paper at http://www.nature.com/ncomms/2015/150713/ncomms8701/full/ncomms8701.html

This news release can be found online at http://news.rice.edu/2015/07/14/nonmagnetic-duo-form-unique-magnet/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Morosan Research Group: http://www.morosan.rice.edu

NIST Center for Neutron Research - TiAu: The first itinerant antiferromagnet with no magnetic elements: http://www.ncnr.nist.gov/AnnualReport/FY2014/NCNR_AR_2014.pdf

Journal Club for Condensed Matter Physics - Magnetism without local moments: http://www.condmatjournalclub.org/?p=2503

Wiess School of Natural Sciences: http://naturalsciences.rice.edu

Images for download:

http://news.rice.edu/wp-content/uploads/2015/06/0629_MAGNET-1-WEB.jpg

Measurements at Rice University show that a crystalline form of titanium and gold - TiAu - becomes magnetic (red peak) at a cold 36 kelvins, about minus 395 degrees Fahrenheit. The Rice lab discovered the material is the first known example of an itinerant antiferromagnet. (Credit: Eteri Svanidze/Rice University)

http://news.rice.edu/wp-content/uploads/2015/06/0629_MAGNET-2-WEB.jpg

Rice University researchers (from left) Emilia Morosan, Eteri Svanidze and Jiakui Wang revealed their discovery of the first itinerant antiferromagnet. (Credit: Jeff Fitlow/Rice University)

http://news.rice.edu/wp-content/uploads/2015/06/0629_MAGNET-3-WEB.jpg

Eteri Svanidze looks at a sample of TiAu, the first itinerant antiferromagnet, discovered at Rice University. With her are fellow Rice graduate student Jiakui Wang, top, and physicist Emilia Morosan. (Credit: Jeff Fitlow/Rice University)

http://news.rice.edu/wp-content/uploads/2015/06/0629_MAGNET-4-WEB.jpg

A sample of TiAu made in the Morosan lab at Rice University. The material is the first known itinerant antiferromagnet. Its discovery may enhance the scientific understanding of magnetism. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,888 undergraduates and 2,610 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked among some of the top schools for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/AboutRiceU.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!

Further reports about: Titanium antiferromagnetic magnetism materials temperature

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>