Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New SQUID-based detector opens up new fields of study with new level of sensitivity

14.08.2017

A new sensor array using superconducting quantum interference demonstrates impressive sensitivity and bandwidth, offering new applications in nuclear material tracking, astronomy and more

Investigators at the University of Colorado, Boulder and the National Institute of Standards and Technology (NIST) have developed a new sensor array-based instrument that offers ultra-low noise detection of small amounts of energy for a number of applications. The new device allows for the collection of data from many more detectors than was previously possible. The advance, reported in this week's issue of Applied Physics Letters, from AIP Publishing, is expected to allow applications in fields as diverse as nuclear materials accounting, astrophysics and X-ray spectrometry.


This is a photograph of a 33-channel SQUID multiplexer chip (20 mm x 4 mm) along with its microwave response showing the associated resonances. Multiple chips are daisy-chained together to achieve larger multiplexing factors.

Credit: J.A.B. Mates, University of Colorado, Boulder

The instrument consists of 128 superconducting sensors and combines their output into a single channel provided by a pair of coaxial cables. In the past, array size was limited by the bandwidth available to combine signals into a reasonable number of output channels. This new research demonstrates a hundred-fold bandwidth improvement, and the investigators plan to do even better soon. They overcame the bandwidth barrier by using very cold superconducting microwave circuitry and superconducting quantum interference device amplifiers, known as SQUIDs, capable of boosting the intensity of small signals.

The new device uses radiofrequency SQUIDs to regulate high-quality microwave resonators. When these resonators are coupled to a common microwave feed line, with each resonator tuned to a different frequency, all sensors can be simultaneously monitored.

"It's as if one were trying to listen to hundreds of radio stations at one time, through one radio receiver," said Ben Mates of the University of Colorado and lead author of the work. The SQUID resonators boost the signal in each channel, he explained, allowing simultaneous readout of all the radio stations at once.

Versions of the new instrument can detect signals over a wide range of frequencies, from short-wavelength gamma or X-rays to long-wavelength microwaves. Gamma ray detection is crucial for nuclear materials accounting, particularly for tracking plutonium isotopes in spent nuclear fuels. Since plutonium can be used to create nuclear weapons, it is important to have fast, accurate methods to measure the amount of plutonium in nuclear fuel sent for reprocessing.

Current technology for tracking plutonium uses mass spectrometry, but this method is expensive and time consuming. Faster and less costly technologies based on gamma-ray spectroscopy don't have the accuracy to rule out small discrepancies in amounts of plutonium from a large facility. Only 8-10 kilograms of missing material is needed to build a nuclear bomb. The new array detectors are candidates to improve the accuracy of gamma-ray spectroscopy so that nuclear material can be tracked more easily.

At the other end of the spectrum, the new instrument is expected to improve astronomical studies of cosmic microwave background radiation, which is mostly uniform, although small and important fluctuations exist in its intensity and polarization. The researchers predict that similar versions of their instrument will be used to search for fluctuations in polarization that are a signature of an inflationary epoch in the earliest moments of the universe.

The investigators hope that a larger array will allow them to develop, in collaboration with the Department of Energy's SLAC facility at Stanford, a unique spectrometer capable of simultaneously collecting and precisely measuring many high energy X-rays from materials under study at the California facility's X-ray free electron laser. Penetrating X-rays from this powerful tool are increasingly used to understand the properties of matter on ultrashort timescales, but larger detector arrays are desirable even for this bright X-ray source. Toward this end, future work will focus on increasing the array size to a thousand sensors or more.

###

The article, "Simultaneous readout of 128 X-ray and Gamma-ray Transition-edge Microcalorimeters using Microwave SQUID Multiplexing," is authored by J.A.B. Mates, D.T. Becker, D.A. Bennett, B.J. Dober, J.D. Gard, J.P. Hays-Wehle, J.W. Fowler, G.C. Hilton, C.D. Reintsema, D.R. Schmidt, D.S. Swetz, J.R. Vale and J.N. Ullom. The article [DOI: 10.1063/1.4986222] appeared in Applied Physics Letters on August 8, 2017 and can be accessed at: http://aip.scitation.org/doi/full/10.1063/1.4986222 .

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org.

Media Contact

Julia Majors
media@aip.org
301-209-3090

 @AIPPhysicsNews

http://www.aip.org 

Julia Majors | EurekAlert!

Further reports about: SQUID SQUIDs X-ray detector fluctuations nuclear materials spectroscopy

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>