Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New paths for generation of ultracold molecules

11.02.2016

Scientists at MPQ produce an extremely cold gas of organic polar molecules

The study of ultracold molecules is a science of its own. Ultracold molecules provide the possibility to investigate fundamental chemical processes or to explore physics beyond the standard model of particle physics.


Fig. 1: Left: Illustration of the various processes that take place during Sisyphus cooling of polar molecules. Right: Sketch of the experimental setup.

Graphic: MPQ, Quantum Dynamics Division


Fig. 2: Integral of the kinetic energy distribution of formaldehyde molecules at the end of the cooling cycle.

Graphic: MPQ, Quantum Dynamics Division

The only snag is the fact that molecules are very difficult to cool down to really low temperatures because of their manifold vibrational and rotational states. A team of scientists led by Dr. Martin Zeppenfeld from the Quantum Dynamics Division of Prof. Gerhard Rempe at the Max Planck Institute of Quantum Optics in Garching has now made a virtue of necessity: the so-called optoelectrical Sisyphus technique, developed in the group, exploits the polarity of formaldehyde molecules, while reaching temperatures as low as 420 micro-Kelvin (PRL, 10 February 2016, DOI:10.1103/PhysRevLett.116.063005).

As a result of the cooling process, not only the temperature but also the entropy – a measure of thermodynamic disorder – of the gas is significantly reduced. The system thereby approaches the regime where it has to be described by the laws of quantum physics. “We have reached a point where we can proceed with further experiments that will lead to new fundamental insights into the behaviour of molecular many-body systems,” Professor Rempe says. “For example, we envision the investigation of collision processes or of molecular spectra. These are of particular interest because formaldehyde plays a key role in chemistry in interstellar space.”

The central part of the experiment is an electrostatic trap, made of two capacitor plates spaced by three millimetres. The plates are covered by microstructure electrodes between which high voltages are applied. The resulting potential is similar to a “bath tub”, with a small homogeneous field in the centre of the trap and a steep rise of the field at the edges.

A cloud of formaldehyde molecules (H2CO), precooled to less than 1 Kelvin (minus 273 Grad Celsius), is loaded into this potential. The mechanism of the subsequently applied relatively new cooling technique relies on the fact that these molecules exhibit a permanent electric dipole moment (i.e. the negative charge is shifted towards the oxygen atom). Depending on the orientation of its dipole with respect to the electric field a molecule is either strongly trapped (anti-parallel orientation), weakly trapped (inclined) or, in the case of parallel alignment, not trapped at all, which means that the molecule gets lost.

Inside the trap the particles climb up the potential hill at the edges until their kinetic energy is almost completely converted into potential energy. At this point RF-radiation changes the dipole orientation of a particular molecule into a more weakly trapped state. (The RF-radiation is only resonant to transitions in the high electric fields that are prevalent at the edges of the trap.) As this state corresponds to a lower potential energy, the particle regains a smaller amount of kinetic energy when it rolls back into the centre of the trap (see fig. 1).

Repeating this process requires the molecule to be brought back into the strongly trapped state once it has reached the bottom of the trap. This is done by exciting the molecule, by infrared laser light, into a vibrational state that spontaneously decays into the ground state. During this transition the dipole possibly flips back into antiparallel alignment.

“The rate of the cooling procedure depends on the rate of this spontaneous decay. In particular it is very important that it proceeds much faster than the transition induced by the RF-radiation,” points out Alexander Prehn, a doctoral candidate on the experiment. “Each time the cycle is repeated the molecules loose kinetic energy; and because they have to climb up the potential hill again and again, the method is named after the Greek hero Sisyphus.”

A timespan of about 50 seconds (15 to 20 cycles) is sufficient to cool the molecular cloud down to a temperature of around 420 micro-Kelvin. To determine the final temperature distribution, a series of measurements is performed where the ensemble is irradiated with radio waves of a different frequency each time. All molecules that can mount the potential hill up to a certain height (which depends on the frequency) or above are transferred into non-trapped states and get lost. The remaining molecules of lower kinetic energy are counted. This way a distribution of the kinetic energy can be deduced (see fig. 2).

That way the team has produced the largest ensemble of ultracold molecules ever and has thus set a new record. In addition, by applying the right kind of infrared and microwave radiation, they make 80 percent of the molecules end up in the same internal rotational state. “It is of great importance that during all these cooling steps the entropy of the ensemble has been reduced,” Martin Zeppenfeld, leader of the project, points out. “With the help of optoelectrical Sisyphus cooling we have increased the phase-space density by a factor of 10 000 which proves the usefulness of the technique. The final state stands out due to its greatly reduced thermodynamic disorder. This provides the possibility to investigate collisions between the molecules or, in future experiments, to explore collective quantum many-body phenomena. New perspectives also exist in the field of spectroscopy.”

“Laboratory experiments with formaldehyde at low temperatures are particularly interesting since formaldehyde plays a key role in chemistry at low temperatures in interstellar space. It is regarded as a fundamental building block of all more complex organic compounds.” Martin Ibrügger, a doctoral candidate on the experiment, adds. The cooling method can be applied to different molecular species, and it could be further improved to reach even lower temperatures. “As one of the next steps we can also try to continue with other cooling techniques such as evaporative cooling. This should allow the nano-Kelvin regime to be reached which is necessary for the formation of a Bose Einstein Condensate.” Rosa Glöckner, a doctoral candidate on the experiment, explains. “Our result is thus an important step on the way to producing quantum-degenerate gases made of poly-atomic molecules.” Olivia Meyer-Streng

Original publication:
Alexander Prehn, Martin Ibrügger, Rosa Glöckner, Gerhard Rempe, and Martin Zeppenfeld
Optoelectrical cooling of polar molecules to sub-millikelvin temperatures
Physical Review Letters, 10 February 2016, DOI:10.1103/PhysRevLett.116.063005

Contact:

Prof. Dr. Gerhard Rempe
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 701
E-mail: gerhard.rempe@mpq.mpg.de

Dr. Martin Zeppenfeld
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 - 726
E-mail: martin.zeppenfeld@mpq.mpg.de

Alexander Prehn
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 - 614
E-mail: alexander.prehn@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 - 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>