Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New design of primitive quantum computer finds application

11.05.2016

Scientists and engineers from the Universities of Bristol and Western Australia have developed how to efficiently simulate a "quantum walk" on a new design for a primitive quantum computer.

Quantum computers have significant potential to open entirely new directions for processing information and to overhaul the way that we think about and use the science of computation. Modern computers already play a huge role in society -- they routinely handle and process vast amounts of data and solve calculations at an incredible rate.


This is an artistic demonstration of quantum walk painted by Milica Prokic. A quantum walker, like photon, can jump between paths and spread very quickly because of quantum superposition and interference

Credit: © University of Bristol. All rights reserved

However, there are some problems that they just cannot solve in a useful amount of time, no matter how fast they become. The concept of a quantum computer aims to address this, exploring uncharted computation and solving at least some of these problems that classical computers cannot.

The study published today in Nature Communications, reports strong evidence that with this method something meaningful can already be seen with a primitive quantum computer that cannot be seen with a classical computer. The very first steps towards this have been implemented in the lab in Bristol.

Dr Ashley Montanaro, Lecturer in Applied Mathematics and EPSRC Fellow from the University of Bristol's School of Mathematics, said: "A quantum computer is a machine designed to use quantum mechanics to solve problems more efficiently than any possible classical computer.

"We know some algorithms that can run on such machines and it's an open and exciting challenge to find more. But most of the quantum algorithms we know need to be run on a large-scale quantum computer to see a speed up."

Building a large-scale quantum computer is one of the biggest engineering challenges today. There's a growing worldwide effort to develop one and it needs substantial effort from a wide range of expertise - including as part of the UK National Quantum Technologies Programme (UKNQT). The results could be tremendous, offering fast and cheap ways to design new materials and new pharmaceuticals.

But there is a field of research emerging now that can help accelerate understanding how quantum computers will work and how users can apply them. Examining the power of smaller, more primitive designs for quantum computers indicates that sooner than we thought, quantum machines could outperform the capabilities of classical computing for very specific tasks -- "Boson Sampling" is a recent example that is driven by what is experimentally available very soon.

Big questions researchers face include what can these primitive quantum processors do that is useful to someone and how sophisticated do they need to be. The results published in today's paper help to answer this question, by looking at how to simulate particular kinds of a phenomenon called the quantum walk.

The quantum walk at first glance is abstract. But it is the quantum mechanical version of very useful models such as Brownian motion and the "drunken sailor's random walk". The key difference is the particle in the quantum walk is endowed with the principle of quantum superposition. This has enabled other researchers to show they are a new way to think about how full-scale quantum computers might operate and to create useful quantum algorithms.

Xiaogang Qiang, PhD student in the School of Physics who implemented the experiment, said: "It's like the particle can explore space in parallel. This parallelism is key to quantum algorithms, based on quantum walks that search huge databases more efficiently than we can currently."

Dr Jonathan Matthews, EPSRC Early Career Fellow and Lecturer in the School of Physics and the Centre for Quantum Photonics, explained: "An exciting outcome of our work is that we may have found a new example of quantum walk physics that we can observe with a primitive quantum computer, that otherwise a classical computer could not see.

"These otherwise hidden properties have practical use, perhaps in helping to design more sophisticated quantum computers."

###

Paper

'Efficient quantum walk on a quantum processor' [open access] by Xiaogang Qiang, Thomas Loke, Ashley Montanaro, Kanin Aungskunsiri, Xiaoqi Zhou, Jeremy L. O'Brien, Jingbo Wang, Jonathan C. F. Matthews in Nature Communications

Media Contact

Joanne Fryer
joanne.fryer@bristol.ac.uk
44-011-733-17276

 @BristolUni

http://www.bristol.ac.uk 

Joanne Fryer | EurekAlert!

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>