Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellites catch 'growth spurt' from newborn protostar

25.03.2015

Using data from orbiting observatories, including NASA's Spitzer Space Telescope, and ground-based facilities, an international team of astronomers has discovered an outburst from a star thought to be in the earliest phase of its development. The eruption, scientists say, reveals a sudden accumulation of gas and dust by an exceptionally young protostar known as HOPS 383.

Stars form within collapsing fragments of cold gas clouds. As the cloud contracts under its own gravity, its central region becomes denser and hotter. By the end of this process, the collapsing fragment has transformed into a hot central protostar surrounded by a dusty disk roughly equal in mass, embedded in a dense envelope of gas and dust. Astronomers call this a "Class 0" protostar.


Infrared images from instruments at Kitt Peak National Observatory (KPNO, left) and NASA's Spitzer Space Telescope document the outburst of HOPS 383, a young protostar in the Orion star-formation complex. Background: A wide view of the region taken from a Spitzer four-color infrared mosaic.

Credit: E. Safron et al.; Background: NASA/JPL/T. Megeath (U-Toledo)

"HOPS 383 is the first outburst we've ever seen from a Class 0 object, and it appears to be the youngest protostellar eruption ever recorded," said William Fischer, a NASA Postdoctoral Program Fellow at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

The Class 0 phase is short-lived, lasting roughly 150,000 years, and is considered the earliest developmental stage for stars like the sun.

A protostar has not yet developed the energy-generating capabilities of a sun-like star, which fuses hydrogen into helium in its core. Instead, a protostar shines from the heat energy released by its contraction and by the accumulation of material from the disk of gas and dust surrounding it. The disk may one day develop asteroids, comets and planets.

Because these infant suns are thickly swaddled in gas and dust, their visible light cannot escape. But the light warms dust around the protostar, which reradiates the energy in the form of heat detectable by infrared-sensitive instruments on ground-based telescopes and orbiting satellites.

HOPS 383 is located near NGC 1977, a nebula in the constellation Orion and a part of its sprawling star-formation complex. Located about 1,400 light-years away, the region constitutes the most active nearby "star factory" and hosts a treasure trove of young stellar objects still embedded in their natal clouds.

A team led by Thomas Megeath at the University of Toledo in Ohio used Spitzer to identify more than 300 protostars in the Orion complex. A follow-on project using the European Space Agency's Herschel Space Observatory, called the Herschel Orion Protostar Survey (HOPS), studied many of these objects in greater detail.

The eruption of HOPS 383 was first recognized in 2014 by astronomer Emily Safron shortly after her graduation from the University of Toledo. Under the supervision of Megeath and Fischer, she had just completed her senior thesis comparing the decade-old Spitzer Orion survey with 2010 observations from NASA's Wide-field Infrared Survey Explorer (WISE) satellite. Using software to analyze the data, Safron had already run through it several times without finding anything new. But with her thesis completed and graduation behind her, she decided to take the extra time to compare images of the "funny objects" by eye.

That's when she noticed HOPS 383's dramatic change. "This beautiful outburst was lurking in our sample the whole time," Safron said.

Safron's catalog of observations included Spitzer data at wavelengths of 3.6, 4.5 and 24 microns and WISE data at 3.4, 4.6 and 22 microns. HOPS 383 is so deeply enshrouded in dust that it wasn't seen at all before the outburst at the shortest Spitzer wavelength, and an oversight in a version of the catalog produced before Safron's involvement masked the increase at the longest wavelengths. As a result, her software saw a rise in brightness in only one wavelength out of three, which failed to meet her criteria for the changes she was hoping to find.

Once they realized what had happened, Safron, Fischer and their colleagues gathered additional Spitzer data, Herschel observations, and images from ground-based infrared telescopes at the Kitt Peak National Observatory in Arizona and the Atacama Pathfinder Experiment in northern Chile. Their findings were published in the Feb. 10 edition of The Astrophysical Journal.

The first hint of brightening appears in Spitzer data from 2006. By 2008, they write, HOPS 383's brightness at a wavelength of 24 microns had increased by 35 times. According to the most recent data available, from 2012, the eruption shows no sign of abating.

"An outburst lasting this long rules out many possibilities, and we think HOPS 383 is best explained by a sudden increase in the amount of gas the protostar is accreting from the disk around it," explained Fischer.

Scientists suspect that instabilities in the disk lead to episodes where large quantities of material flow onto the central protostar. The star develops an extreme hot spot at the impact point, which in turn heats up the disk, and both brighten dramatically.

The team continues to monitor HOPS 383 and has proposed new observations using NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA), the world's largest flying telescope.

Francis Reddy | EurekAlert!

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>