Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Swift Satellite Tallies Water Production of Mars-bound Comet

20.06.2014

In late May, NASA's Swift satellite imaged comet Siding Spring, which will brush astonishingly close to Mars later this year. These optical and ultraviolet observations are the first to reveal how rapidly the comet is producing water and allow astronomers to better estimate its size. 

"Comet Siding Spring is making its first passage through the inner solar system and is experiencing its first strong heating from the sun," said lead researcher Dennis Bodewits, an astronomer at the University of Maryland College Park (UMCP). "These observations are part of a two-year-long Swift campaign to watch how the comet's activity develops during its travels."


This composite of C/2013 A1 (Siding Spring) merges Swift UVOT images taken between May 27 and 29, 2014. Sunlight reflected from the comet's dust, which produces most of the light in this image, appears yellow; violet shows ultraviolet light produced by hydroxyl (OH), a molecular fragment of water.

Image Credit: NASA/Swift/D. Bodewits (UMD), DSS

"Fresh" comets like Siding Spring, which is formally known as C/2013 A1, contain some of the most ancient material scientists can study. The solid part of a comet, called its nucleus, is a clump of frozen gases mixed with dust and is often described as a "dirty snowball." Comets cast off gas and dust whenever they venture near enough to the sun.

What powers this activity is the transformation of frozen material from solid ice to gas, a process called sublimation. As the comet approaches the sun and becomes heated, different gases stream from the nucleus, carrying with them large quantities of dust that reflect sunlight and brighten the comet. By about two and a half times Earth's distance from the sun (2.5 astronomical units, or AU), the comet has warmed enough that water becomes the primary gas emitted by the nucleus.

Between May 27 and 29, Swift's Ultraviolet/Optical Telescope (UVOT) captured a sequence of images as comet Siding Spring cruised through the constellation Eridanus at a distance of about 2.46 AU (229 million miles or 368 million km) from the sun. While the UVOT cannot detect water molecules directly, it can detect light emitted by fragments formed when ultraviolet sunlight breaks up water -- specifically, hydrogen atoms and hydroxyl (OH) molecules.

"Based on our observations, we calculate that at the time of the observations the comet was producing about 2 billion billion billion water molecules, equivalent to about 13 gallons or 49 liters, each second," said team member Tony Farnham, a senior research scientist at UMCP. At this rate, comet Siding Spring could fill an Olympic-size swimming pool in about 14 hours. Impressive as it sounds, though, this is relatively modest water emission compared to other comets Swift has observed.

Based on these measurements, the team concludes that the icy nucleus of comet Siding Spring is only about 2,300 feet (700 meters) across, placing it at the lower end of a size range estimated from earlier observations by other spacecraft.

The comet makes its closest approach to Mars on Oct. 19, passing just 86,000 miles (138,000 km) from the Red Planet -- so close that gas and dust in the outermost reaches of the comet's atmosphere, or coma, will interact with the atmosphere of Mars.

For comparison, the closest recorded Earth approach by a comet was by the now-defunct comet Lexell, which on July 1, 1770, swept to within 1.4 million miles (2.3 million km) or about six times farther than the moon. During its Mars flyby, comet Siding Spring will pass more than 16 times closer than this.  

Scientists have established that the comet poses no danger to spacecraft now in orbit around Mars. These missions will be pressed into service as a provisional comet observation fleet to take advantage of this unprecedented opportunity.

The Swift observations are part of a larger study to investigate the activity and evolution of new comets, which show distinct brightening characteristics as they approach the sun not seen in other comets. Bodewits and his colleagues single out comets that can be observed by Swift at distances where water has not yet become the primary gas and repeatedly observe them as they course through the inner solar system. This systematic study will help astronomers better understand how comet activity changes with repeated solar heating.

Related links:

Mars & Comets: Siding Spring (C/2013 A1)
http://mars.nasa.gov/comets/sidingspring/

NASA's Hubble Space Telescope Spots Mars-Bound Comet Sprout Multiple Jets (03.27.2014)
http://www.nasa.gov/press/2014/march/nasas-hubble-space-telescope-spots-mars-bound-comet-sprout-multiple-jets/

NASA's Swift Monitors Departing Comet Garradd (4.13.2012)
http://www.nasa.gov/mission_pages/swift/bursts/comet-garradd.html

Swift’s Comet Tally Highlighted in Observatory Webcast (04.03.2009)
http://www.nasa.gov/mission_pages/swift/bursts/observatory_webcast.html

NASA's Swift Spies Comet Lulin (02.20.2009)
http://www.nasa.gov/mission_pages/swift/bursts/lulin.html

NASA's Swift Looks to Comets for a Cool View (12.03.2008)
http://www.nasa.gov/mission_pages/swift/bursts/cool_comet.html

 

Francis Reddy

NASA's Goddard Space Flight Center, Greenbelt, Maryland

Francis Reddy | Eurek Alert!

Further reports about: Mars NASA Production Swift Telescope activity comets observations spacecraft

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>