Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast

02.05.2016

Nearly 10 billion years ago, the black hole at the center of a galaxy known as PKS B1424-418 produced a powerful outburst. Light from this blast began arriving at Earth in 2012. Now astronomers using data from NASA's Fermi Gamma-ray Space Telescope and other space- and ground-based observatories have shown that a record-breaking neutrino seen around the same time likely was born in the same event.

"Neutrinos are the fastest, lightest, most unsociable and least understood fundamental particles, and we are just now capable of detecting high-energy ones arriving from beyond our galaxy," said Roopesh Ojha, a Fermi team member at NASA's Goddard Space Flight Center in Greenbelt, Maryland, and a coauthor of the study. "Our work provides the first plausible association between a single extragalactic object and one of these cosmic neutrinos."


NASA Goddard scientist Roopesh Ojha explains how Fermi and TANAMI uncovered the first plausible link between a blazar eruption and a neutrino from deep space.

Downloadable files: http://svs.gsfc.nasa.gov/12218

YouTube Video: https://youtu.be/Fq-5RI9C69I

Credit: NASA's Goddard Space Flight Center

Although neutrinos far outnumber all the atoms in the universe, they rarely interact with matter, which makes detecting them quite a challenge. But this same property lets neutrinos make a fast exit from places where light cannot easily escape -- such as the core of a collapsing star -- and zip across the universe almost completely unimpeded. Neutrinos can provide information about processes and environments that simply aren't available through a study of light alone.

The IceCube Neutrino Observatory, built into a cubic kilometer of clear glacial ice at the South Pole, detects neutrinos when they interact with atoms in the ice. This triggers a cascade of fast-moving charged particles that emit a faint glow, called Cerenkov light, as they travel, which is picked up by thousands of optical sensors strung throughout IceCube. Scientists determine the energy of an incoming neutrino by the amount of light its particle cascade emits.

To date, the IceCube science team has detected about a hundred very high-energy neutrinos and nicknamed some of the most extreme events after characters on the children's TV series "Sesame Street." On Dec. 4, 2012, IceCube detected an event known as Big Bird, a neutrino with an energy exceeding 2 quadrillion electron volts (PeV). To put that in perspective, it's more than a million million times greater than the energy of a dental X-ray packed into a single particle thought to possess less than a millionth the mass of an electron. Big Bird was the highest-energy neutrino ever detected at the time and still ranks second.

Where did it come from? The best IceCube position only narrowed the source to a patch of the southern sky about 32 degrees across, equivalent to the apparent size of 64 full moons.

Enter Fermi. Starting in the summer of 2012, the satellite's Large Area Telescope (LAT) witnessed a dramatic brightening of PKS B1424-418, an active galaxy classified as a gamma-ray blazar. An active galaxy is an otherwise typical galaxy with a compact and unusually bright core. The excess luminosity of the central region is produced by matter falling toward a supermassive black hole weighing millions of times the mass of our sun. As it approaches the black hole, some of the material becomes channeled into particle jets moving outward in opposite directions at nearly the speed of light. In blazars, one of these jets happens to point almost directly toward Earth.

During the year-long outburst, PKS B1424-418 shone between 15 and 30 times brighter in gamma rays than its average before the eruption. The blazar is located within the Big Bird source region, but then so are many other active galaxies detected by Fermi.

The scientists searching for the neutrino source then turned to data from a long-term observing program named TANAMI. Since 2007, TANAMI has routinely monitored nearly 100 active galaxies in the southern sky, including many flaring sources detected by Fermi. The program includes regular radio observations using the Australian Long Baseline Array (LBA) and associated telescopes in Chile, South Africa, New Zealand and Antarctica. When networked together, they operate as a single radio telescope more than 6,000 miles across and provide a unique high-resolution look into the jets of active galaxies.

Three radio observations of PKS B1424-418 between 2011 and 2013 cover the period of the Fermi outburst. They reveal that the core of the galaxy's jet had brightened by about four times. No other galaxy observed by TANAMI over the life of the program has exhibited such a dramatic change.

"We combed through the field where Big Bird must have originated looking for astrophysical objects capable of producing high-energy particles and light," said coauthor Felicia Krauss, a doctoral student at the University of Erlangen-Nuremberg in Germany. "There was a moment of wonder and awe when we realized that the most dramatic outburst we had ever seen in a blazar happened in just the right place at just the right time."

In a paper published Monday, April 18, in Nature Physics, the team suggests the PKS B1424-418 outburst and Big Bird are linked, calculating only a 5-percent probability the two events occurred by chance alone. Using data from Fermi, NASA's Swift and WISE satellites, the LBA and other facilities, the researchers determined how the energy of the eruption was distributed across the electromagnetic spectrum and showed that it was sufficiently powerful to produce a neutrino at PeV energies.

"Taking into account all of the observations, the blazar seems to have had means, motive and opportunity to fire off the Big Bird neutrino, which makes it our prime suspect," said lead author Matthias Kadler, a professor of astrophysics at the University of Wuerzburg in Germany.

Francis Halzen, the principal investigator of IceCube at the University of Wisconsin-Madison, and not involved in this study, thinks the result is an exciting hint of things to come. "IceCube is about to send out real-time alerts when it records a neutrino that can be localized to an area a little more than half a degree across, or slightly larger than the apparent size of a full moon," he said. "We're slowly opening a neutrino window onto the cosmos."

###

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy and with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

For more information about NASA's Fermi, visit:

http://www.nasa.gov/fermi

Francis Reddy | EurekAlert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>