Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Swift Narrows Down Origin of Important Supernova Class

21.03.2012
Studies using X-ray and ultraviolet observations from NASA's Swift satellite provide new insights into the elusive origins of an important class of exploding star called Type Ia supernovae.

These explosions, which can outshine their galaxy for weeks, release large and consistent amounts of energy at visible wavelengths. These qualities make them among the most valuable tools for measuring distance in the universe. Because astronomers know the intrinsic brightness of Type Ia supernovae, how bright they appear directly reveals how far away they are.


Three types of systems, illustrated here, may host Type Ia supernovae. The first two panels depict a white dwarf in a binary system accumulating matter transferred from a red supergiant companion many times the sun's mass (left) or similar to the sun (middle). The transferred matter is thought to accumulate on the white dwarf and ultimately cause it to explode. Swift data on dozens of supernovae essentially eliminate the first model. Mounting evidence suggests that some Type Ia supernovae occur when binary white dwarfs (right) merge and collide. Credit: NASA/Swift/ Aurore Simonnet, Sonoma State Univ.

"For all their importance, it's a bit embarrassing for astronomers that we don't know fundamental facts about the environs of these supernovae," said Stefan Immler, an astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Md. "Now, thanks to unprecedented X-ray and ultraviolet data from Swift, we have a clearer picture of what's required to blow up these stars."

Astronomers have known for decades that Type Ia supernovae originate with a remnant star called a white dwarf, which detonates when pushed to a critical mass. The environment that sets the stage for the explosion, however, has been harder to pin down.

According to the most popular scenario, a white dwarf orbits a normal star and pulls a stream of matter from it. This gas flows onto the white dwarf, which gains mass until it reaches a critical threshold and undergoes a catastrophic explosion.

"A missing detail is what types of stars reside in these systems. They may be a mix of stars like the sun or much more massive red- and blue-supergiant stars," said Brock Russell, a physics graduate student at the University of Maryland, College Park, and lead author of the X-ray study.

In a competing model, the supernova arises when two white dwarfs in a binary system eventually spiral inward and collide. Observations suggest both scenarios occur in nature, but no one knows which version happens more often.

Swift's primary mission is to locate gamma-ray bursts, which are more distant and energetic explosions associated with the birth of black holes. Between these bursts, astronomers can use Swift's unique capabilities to study other objects, including newly discovered supernovae. The satellite's X-ray Telescope (XRT) has studied more than 200 supernovae to date, with about 30 percent being Type Ia.

Russell and Immler combined X-ray data for 53 of the nearest known Type Ia supernovae but could not detect an X-ray point source. Stars shed gas and dust throughout their lives. When a supernova shock wave plows into this material, it becomes heated and emits X-rays. The lack of X-rays from the combined supernovae shows that supergiant stars, and even sun-like stars in a later red giant phase, likely aren't present in the host binaries.

In a companion study, a team led by Peter Brown at the University of Utah in Salt Lake City looked at 12 Type Ia events observed by Swift's Ultraviolet/Optical Telescope (UVOT) less than 10 days after the explosion. A supernova shock wave should produce enhanced ultraviolet light as it interacts with its companion, with larger stars producing brighter, longer enhancements. Swift's UVOT detected no such emission, leading the researchers to exclude large, red giant stars from Type Ia binaries.

Taken together, the studies suggest the companion to the white dwarf is either a smaller, younger star similar to our sun or another white dwarf. The X-ray findings will appear in the April 1 issue of The Astrophysical Journal Letters; the ultraviolet results appear in the April 10 edition of The Astrophysical Journal.

The ultraviolet studies rely on early, sensitive observations. As Brown's study was being written, nature provided a great case study in SN 2011fe, the closest Type Ia supernova since 1986. Early Swift UVOT observations show no ultraviolet enhancement. According to the findings in an unpublished study led also by Brown, this means any companion must be smaller than the sun.

Swift data on SN 2011fe also figure prominently in unpublished studies led by Alicia Soderberg at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. Preliminary results suggest that the explosion was caused by merging white dwarfs.

Swift launched in November 2004 and is managed by Goddard. It is operated in collaboration with Pennsylvania State University and other national and international partners.

Francis Reddy
NASA's Goddard Space Flight Center, Greenbelt, Md.

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/swift/bursts/supernova-narrowing.html

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
02.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>