Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery of bat with an extraordinary nose solved

09.07.2009
A research paper co-written by a Virginia Tech faculty member explains a 60-year mystery behind a rare bat's nose that is unusually large for its species. The findings soon will be published in the scientific trade journal, Physical Review Letters.

The article, "Acoustic effects accurately predict an extreme case of biological morphology," by Z. Zhang, R. Müller, and S.N. Truong, details the adult Bourret's horseshoe bat (known scientifically as the "Rhinolophus paradoxolophus," meaning paradoxical crest), and it's roughly 9 millimeters in length nose.

The typical horseshoe bat's nose is half that long, said Rolf Mueller, an associate professor with the Virginia Tech mechanical engineering department and director for the Bio-inspired Technology (BIT) Laboratory in Danville, Va. "This nose is so much larger than anything else," among other bats of the region, he said.

Mueller's findings show that the bat uses its elongated nose to create a highly focused sonar beam. Bats detect their environment through ultrasonic beams, or sonar, emitted from their mouths -- or noses, as in the case of the paradoxolophus bat. The echoes of the sound wave convey a wealth of information on objects in the bat's environment. This bat from the remote rainforests of South East Asia received its name 58 years ago because of its mysterious trait.

Much like a flashlight with an adjuster that can create an intense but small beam of light, the bat's nose can create a small but intense sonar beam. Mueller and his team used computer animation to compare varying sizes of bat noses, from small noses on other bats to the large nose of the paradoxolophus bat. In what Mueller calls a perfect mark of evolution, he says his computer modeling shows the length of the paradoxolophus bat's nose stops at the exact point the sonar beam's focal point would become ineffective.

"By predicting the width of the ultrasonic beam for each of these nose lengths with a computational method, we found that the natural nose length has a special value: All shortened noses provided less focus of the ultrasonic beam, whereas artificially elongated noses provided only negligible additional benefits," Mueller said. "Hence, this unusual case of a biological shape can be predicted accurately from its physical function alone."

The findings with the paradoxolophus bat are part of a larger study of approximately 120 different bat species and how they use sonar to perceive their environment. Set to finish in February 2010, it is hoped the study's focus on wave-based sensing and communication in bats will help spur groundwork for innovations in cell phone and satellite communications, as well as naval surveillance technology.

Mueller worked on the study with engineers and scientists from China's Shandong University, where he held a professorship when the research project began, and the Vietnamese Academy of Sciences. The article will appear in Physical Review Letters' print edition on July 17 and on the Web site on July 14.

Mueller has focused much of his research career in bio-inspired technology studying bats. He received a Ph.D. in 1998 at the University of Tuebingen, Germany, where he developed computational models for the biosonar system of bats. During postdoctoral research at Yale University, he worked on biosonar-inspired autonomous robots and statistical signal processing methods in natural outdoor environments. In 2000, he returned to Tuebingen University, where he built a lab to develop robots inspired by bats. In 2003, he joined The Maersk Institute of Production Technology at the University of Southern Denmark as an assistant professor, followed by a professorship at Shandong University. He joined the Virginia Tech faculty in 2008.

The College of Engineering (www.eng.vt.edu/) at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college's 5,700 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 1,800 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Learn more about Dr. Mueller at www.me.vt.edu/people/faculty/Mueller.html

Learn more about the Bio-inspired Technology Laboratory at www.ialr.org/research/bio-inspired-technology-laboratory

Steven Mackay | EurekAlert!
Further information:
http://www.vt.edu

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>