Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnons control magnons: Transistors for the next generation of computing

21.08.2014

A disturbance in the local magnetic order of a solid body can propagate across a material just like a wave. This wave is named spin wave and its quanta are known as magnons.

Physicists from the University of Kaiserslautern propose the usage of magnons to carry and process information instead of electrons as it is done in electronics.


The flow of magnons from the transistor’s Source to Drain (blue bubbles) is controlled by the magnons injected into the Gate (red bubbles)

This technology opens access to a new generation of computers in which data are processed without motion of any real particles like electrons.

This leads to a decrease of the accompanying heat loss and, consequently, to lower energy consumption. Moreover, unique magnon properties allow for the utilization of alternative computing concepts resulting in a drastic increase of speed and performance of modern processors.

In a study recently published in the prestigious scientific journal Nature Communications, the Kaiserslautern scientists have realized the transistor – the main component of any modern computer – solely based on Magnons.

The transistor was proposed for the first time and a proof of concept device was demonstrated. The density of magnons in this three-terminal device could be decreased one thousand times while flowing from the transistor's Source to its Drain via the injection of magnons in the Gate.

The interaction between magnon flows was so efficient due to a strong natural nonlinearity of magnons which was enhanced using an artificial magnetic material – the magnonic crystal.

The demonstrated “magnon controls magnon” approach will be used in future for the realization of a single-chip magnetic processor in which Terabytes of data will be processed purely within the same magnonic system.

The research team consisted of Dr. Andrii Chumak, Dr. Alexander Serga and Prof. Dr. Burkard Hillebrands from the State Research Center Optics and Material Sciences (OPTIMAS) funded by the State of Rhineland-Palatinate. Further funding was obtained through the Deutsche Forschungsgemeinschaft (Grant no. SE 1771/1-2) and EU-FET (Grant InSpin 612759).

For details of the study see:
Andrii V. Chumak, Alexander A. Serga, Burkard Hillebrands: Magnon transistor for all-magnon data processing, Nature Communications 2014 doi 10.1038/ncomms5700 (http://www.nature.com/naturecommunications).

Contact: Prof. Dr. Burkard Hillebrands, Tel.: 0631/205-4228, E-Mail: hilleb@physik.uni-kl.de

Legend:The schematic of magnon transistor. The flow of magnons from the transistor’s Source to Drain (blue bubbles) is controlled by the magnons injected into the Gate (red bubbles). The decrease or even the full stop of the Source-to-Drain magnon flow was realized experimentally (Copyright: Chumak, Serga, Hillebrands).

Weitere Informationen:

http://www.uni-kl.de

Thomas Jung | Technische Universität Kaiserslautern

Further reports about: Drain Nature artificial bubbles decrease electrons experimentally natural

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>