Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Bits by Electric Fields

08.11.2016

Researchers now make use of local electric fields for writing and deleting individual nanoscale magnetic skyrmions

Physicists of the University of Hamburg in Germany have demonstrated for the first time the controlled writing and deleting of individual nanoscale magnetic knots – so called skyrmions – by applying local electric fields to an ultrathin film of iron as data storage medium.


Fig. 1: Controlled deleting (left) and writing (right) of individual nanoscale magnetic skyrmions by local electric fields. Between the individual images the tip of a scanning tunneling microscope was properly positioned and the local electric field was raised for a short time up to +3 V/nm (left) or -3V/nm (right). A single atomic vacancy in the ultrathin iron film (dark contrast) indicates the extremely small scale of the written and deleted skyrmions (bright contrast).


Fig. 2: Nanoscale skyrmions ligned up along linear tracks in ultrathin iron films being three atomic layers thick only. The magnetization direction rotates within atomic-scale distances within the skyrmions (bright contrast features), while it is constantly pointing perpendicular to the film plane in the ferromagnetic regions (dark blue regions). The image was recorded with a spin-polarized scanning tunneling microscope, which is the only technique that can reveal magnetization distributions with atomic-scale accuracy.

These tiny knots in the magnetization of ultrathin metallic films exhibit an exceptional stability and are highly promising candidates for future ultra-high density magnetic recording. So far, they could be manipulated by local spin-currents and magnetic fields only.

Now the research group at the University of Hamburg, headed by Roland Wiesendanger, report on the first electric-field controlled manipulation of nanoscale magnetic skyrmions in the journal Nature Nanotechnology (online issue of November 7, 2016). This work paves the way towards a new energy-efficient data storage technology in which electric fields can switch between two distinct magnetic states encoding the bits of information.

Magnetic skyrmions are highly complex three-dimensional spin textures, where the individual magnetic moments rotate in a unique sense by 360° from one side to the other. These objects have particle-like character and a non-trivial topology in contrast to the commonly known ferromagnetic state for which all magnetic moments are aligned in the same direction. Accordingly, skyrmions carry a topological charge „1“, whereas the ferromagnetic state has a topological charge of „0“.

In conventional magnetic data storage devices, the magnetic bits still consist of a rather large number of magnetic atoms with parallel aligned magnetic moments in two opposite directions, thereby encoding the „1“ and „0“ as bits of information. These two different magnetic states of conventional magnetic data storage systems can only be transformed into one another by magnetic fields or by spin currents, but not by electric fields because they are symmetry-related.

This is different in the case of skyrmions: they are topologically distinguishable from the ferromagnetic state and these two states can therefore be transformed into one another by local electric fields. The research group of Roland Wiesendanger could indeed show that tiny magnetic skyrmions can be switched by the local electric field present between the sharp tip of a scanning tunneling microscope and a sample consisting of a three atomic-layer thick iron film on an iridium substrate, and that the direction of the local electric field determines whether skyrmions can be created or deleted (see figure 1). Amazingly, the individual skyrmions in that three atomic layer thick iron film have a size of only 2.2 nm x 3.5 nm and can be aligned along linear tracks as shown in figure 2.

Conventional magnetic bits would never be stable in that size regime, whereas magnetic skyrmions pave the way towards ultra-dense data storage devices. Moreover, the demonstration of controlled electric-field induced writing and deleting of individual magnetic skyrmions can lead to an unprecedented energy-efficient way to store information since spin currents are no longer needed to switch between the two different bit states.

The research work leading to this fascinating discovery was partially supported by the Hamburgische Stiftung für Wissenschaften, Entwicklung und Kultur Helmut und Hannelore Greve in the framework of the “Hamburg Science Prize” for Roland Wiesendanger and his group.


Original publication:

Electric-field-driven switching of individual magnetic Skyrmions,
Pin-Jui Hsu, André Kubetzka, Aurore Finco, Niklas Romming, Kirsten von Bergmann, and Roland Wiesendanger,
Nature Nanotechnology (2016).
DOI: 10.1038/nnano.2016.234

Further Information:

Prof. Dr. Roland Wiesendanger
Sonderforschungsbereich 668
Fachbereich Physik
Universität Hamburg
Jungiusstr. 11a
20355 Hamburg
Tel: +49-40-42838-5244
E-Mail: wiesendanger@physnet.uni-hamburg.de

Weitere Informationen:

http://www.nanoscience.de
http://www.sfb668.de

Heiko Fuchs | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>