Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnet Lab Reclaims World Record for Highest-Field Resistive Magnet

08.01.2010
Physicists who do research at the National High Magnetic Field Laboratory at The Florida State University got a brand new, high-tech toy for the holidays — a world-record magnet.

Engineers and technicians in late December completed testing of a 36-tesla magnet. (Tesla is a measure of magnetic-field strength; the new magnet is more than 1,200 times stronger than a typical refrigerator magnet.)

This achievement reestablishes the magnet lab as the world-record holder for the highest-field “resistive” magnet — a type of electromagnet that uses electricity to generate high magnetic fields. The new magnet — actually an upgrade to an existing one — bests the previous record of 35 tesla, jointly held by the magnet lab and the Grenoble High Magnetic Field Laboratory in France.

“This latest world record is a credit to the ingenuity of the magnet lab’s engineers,” said Nathanael Fortune, chairman of the National High Magnetic Field Laboratory’s User Committee and an associate professor of physics at Smith College in Massachusetts. “The magnet lab’s competitive edge in science and technology depends on continuous enhancements to the lab’s facilities, and users will be thrilled to reach higher fields without increasing the amount of electric power required to get there.”

Engineers at the magnet lab are driven to push magnetic fields as high as possible: They never stop fine-tuning, tinkering and rethinking their magnet designs. This explains why the laboratory holds numerous records — 13 at last count — for strength of field and other key measures of high-magnetic-field research.

Resistive magnets are built in-house at the magnet lab using so-called Florida Bitter technology pioneered by researchers there. Circular plates of copper sheet metal are stamped with cooling holes; insulators with the same pattern are placed between the plates and stacked to make a coil. Voltage is then run across the coil and current flows to make a magnetic field in the center. Because of the limits of available materials (both to conduct current and to minimize stress on the coils), engineers were stuck at 35 tesla for about four years.

But magnet lab engineers discovered that by adjusting the stacking pattern of the Bitter plates, they could increase the magnetic field without increasing stress on the coils. This cost-neutral modification means a higher magnetic field can be created using the same amount of power, 20 megawatts. By comparison, the magnet at the Grenoble High Magnetic Field Laboratory achieves its 35 tesla using 22.5 megawatts of power.

The 36-tesla magnet, which has a 32-millimeter (1.25-inch) experimental space, will be used primarily for physics and materials science research.

Jingping Chen, manager of the resistive magnet program at the magnet lab, said the upgrade of the magnet is just a start, and that major upgrades are planned for many of the resistive magnets at the laboratory.

“We believe this magnet has the potential to reach even higher fields,” Chen said. “We plan to upgrade our other 35-tesla magnet this year as well. And our wider-bore, 31-tesla magnets will be upgraded to around 33 tesla — which will be a new record in the 50-millimeter (1.97-inch) category.”

The National High Magnetic Field Laboratory develops and operates state-of-the-art, high-magnetic-field facilities that faculty and visiting scientists and engineers use for research. The laboratory is sponsored by the National Science Foundation and the state of Florida. To learn more, visit www.magnet.fsu.edu.

CONTACT: Mark Bird; (850) 644-7789, mbird@fsu.edu
or Jingping Chen; (850) 644-8470, jpchen@magnet.fsu.edu

Mark Bird | Newswise Science News
Further information:
http://www.magnet.fsu.edu

More articles from Physics and Astronomy:

nachricht Illinois team finds Wigner crystal -- not Mott insulator -- in 'magic-angle' graphene
25.09.2018 | University of Illinois College of Engineering

nachricht Measuring Smallest Magnetic Fields in the Brain Using Diamond and Laser Technology
25.09.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Small modulator for big data

25.09.2018 | Information Technology

NASA's Terra Satellite glares at the 37-mile wide eye of Super Typhoon Trami

25.09.2018 | Earth Sciences

Rice U. study sheds light on -- and through -- 2D materials

25.09.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>