Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let's not make big waves

28.03.2019

A team of researchers generates ultra-short spin waves in an astoundingly simple material

Due to its potential to make computers faster and smartphones more efficient, spintronics is considered a promising concept for the future of electronics. In a collaboration including the Max Planck Institute for Intelligent Systems (MPI-IS) and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a team of researchers has now successfully generated so-called spin waves much more easily and efficiently than was previously deemed possible. The researchers are presenting their results in the journal Physical Review Letters (DOI: 10.1103/PhysRevLett.122.117202).


An ultrashort spin wave (red) running through a nickel iron layer. Towards the center of the layer, the magnetic direction (blue arrows) swings only up and down in a sort of knot, while the motion in the other parts remains circular -- with opposing sense of magnetic rotation.

Credit: HZDR / Juniks

Modern computer chips are based on transporting electric charges: Each processing event causes an electron current to flow in an electronic component. These electrons encounter resistance, which generates undesired heat. The smaller the structures on a chip, the more difficult it is to dissipate the heat. This charge-based architecture is also partially the reason why the processors' clock rates have not seen any significant increases in years. The nice, steady development curve of chip performance and speed is now flattening. "Existing concepts are reaching their limits," explains Dr. Sebastian Wintz from the Institute of Ion Beam Physics and Materials Research at HZDR. "This is why we are working on a new strategy, the spin waves."

This approach no longer involves transporting charges, but only transfers the electrons' intrinsic angular momentum (,spin') in a magnetic material. The electrons themselves remain stationary, while only their spins change. Since the spins of neighboring electrons sense each other, a change in one spin can travel to its neighbors. The result is a magnetic signal running through the material like a wave - a spin wave. The advantage of spin-powered components is that they would generate very little heat, which means they might use significantly less energy - and this is of great interest for mobile devices such as smartphones. It may also be possible to further miniaturize components for certain applications because spin waves have far shorter wavelengths than comparable electromagnetic signals, for instance in mobile communication. This means we could fit more circuits onto a chip than we can today.

Stirring a spin wave with a magnet vortex

Before we can do all this, we first need a lot more fundamental research. For instance, we need to know how to efficiently generate spin waves. Experts have been trying to work this out for a while now, attaching micrometer-sized metal strips onto thin magnetic layers. An alternating current running through this strip creates a magnetic field that is limited to a very small space. This field will then excite a spin wave in the magnetic layer. But this method has one disadvantage: It is difficult to make the wavelength of the generated spin waves smaller than the width of the metal strip - which is unfavorable for the development of highly integrated components with nanometer-sized structures.

Yet there is an alternative: A magnetic material shaped into circular disks evokes the formation of magnetic vortices whose cores measure no more than about ten nanometers. A magnetic field can then make this vortex core oscillate, which triggers a spin wave in the layer. "Some time ago, we needed relatively complex multi-layered materials to make this happen," Wintz reports. "Now we have managed to send out spin waves from vortex cores in a very simple material." They use an easy-to-manufacture nickel iron alloy layer of about 100 nanometers in thickness.

Unexpectedly short wavelengths

What's remarkable is the wavelength of the generated spin waves - a mere 80 nanometers. "The expert community was surprised we did this in such a simple material," says Dr. Georg Dieterle, who explored the phenomenon in his PhD thesis at MPI-IS. "We also didn't expect to be able to generate such short waves at frequencies in the lower gigahertz range." Experts think that the reason for the short wavelengths resides in the way they travel. Close to the cross-sectional center of the nickel iron layer, the spin wave forms a sort of "knot", inside of which the magnetic direction oscillates only up and down rather than along its usually circular trajectory.

To make these phenomena visible, the team used a special x-ray microscope at the electron storage ring BESSY II at the Helmholtz Zentrum Berlin. "This is the only place on earth that offers the necessary space and time resolutions in this combination," emphasizes Prof. Gisela Schütz, director at MPI-IS. "Without this microscope, we would not have been able to observe these effects." Now the experts are hoping that their results will help further the development of spintronics. "Our vortex cores could, for instance, serve as a local, well controllable source to explore the underlying phenomena and develop new concepts with spin-wave-based components," Dieterle projects. "The spin waves we observed could be of future relevance to highly integrated circuits."

###

Publication:

G. Dieterle, J. Förster, H. Stoll, A.S. Semisalova, S. Finizio, A. Gangwar, M. Weigand, M. Noske, M. Fähnle, I. Bykova, J. Gräfe, D.A. Bozhko, H.Yu. Musiienko-Shmarova, V. Tiberkevich, A.N. Slavin, C.H. Back, J. Raabe, G. Schütz, S. Wintz: Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths, in Physical Review Letters, 2019 (DOI: 10.1103/PhysRevLett.122.117202)

More information:

Dr. Sebastian Wintz
Institute of Ion Beam Physics and Materials Research at the HZDR / Paul Scherrer Institut, Switzerland
Phone: +49 351 260-3221 | Mail: s.wintz@hzdr.de

Prof. Gisela Schütz
Director, Max Planck Institute for Intelligent Systems
Phone: +49 711 689-1950 | Mail: schuetz@is.mpg.de

Media contact:

Simon Schmitt | Science editor
Phone: +49 351 260-3400 | Mobile: +49 175 874 2865 | Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden / Germany |

http://www.hzdr.de

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) performs - as an independent German research center - research in the fields of energy, health, and matter. We focus on answering the following questions:

* How can energy and resources be utilized in an efficient, safe, and sustainable way?

* How can malignant tumors be more precisely visualized, characterized, and more effectively treated?

* How do matter and materials behave under the influence of strong fields and in smallest dimensions?

To help answer these research questions, HZDR operates large-scale facilities, which are also used by visiting researchers: the Ion Beam Center, the High-Magnetic Field Laboratory Dresden, and the ELBE Center for High-Power Radiation Sources. HZDR is a member of the Helmholtz Association and has five sites (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld near Hamburg) with almost 1,200 members of staff, of whom about 500 are scientists, including 150 Ph.D. candidates.

Media Contact

Simon Schmitt
s.schmitt@hzdr.de
49-351-260-3400

 @HZDR_Dresden

http://www.hzdr.de/db/Cms?pNid=

Simon Schmitt | EurekAlert!
Further information:
http://www.hzdr.de/presse/erzeugung_spinwellen
http://dx.doi.org/10.1103/PhysRevLett.122.117202

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>