Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser-based X-ray Imaging Picks Up Speed

17.04.2018

Using a novel, laser-based X-ray technique, laser physicists in Garching have imaged a bone sample in three dimensions by microtomography within minutes, thus taking a significant step towards the medical application of the technology.

Researchers from Ludwig-Maximilians-Universität (LMU), the Max Planck Institute of Quantum Optics (MPQ) and the Technical University of Munich (TUM) have taken a major step towards the clinical application of a new laser-based source of X-rays.


The further development of ATLAS, the high-performance laser in LMU’s Laboratory for Extreme Photonics, paved the way for the tomographic reconstruction of the three-dimensional fine structure of a bone sample within a few minutes. (Photo: Thorsten Naeser)

They recently demonstrated that the instrument enables the tomographic reconstruction of the three-dimensional fine structure of a bone sample within a few minutes. Up to now, laser-based measurements of this sort took several hours.

The breakthrough was made possible by the further development of ATLAS, the high-performance laser in LMU’s Laboratory for Extreme Photonics (LEX Photonics) der LMU on the Research Campus in Garching. Reconstruction of the sample from the imaging data was also facilitated by the use of specially designed computer programmes.

The X-rays used for medical imaging or to inspect the contents of passengers’ baggage at airports are produced by X-ray tubes, whose design has remained essentially unchanged for over a century. Research scientists prefer to use what is known as synchrotron radiation as an X-ray source.

Synchrotron radiation is many times brighter and thus allows one to carry out far more detailed structural analyses. However, sources of synchrotron radiation are relatively thin on the ground, as its generation requires the acceleration of electrons to ultrarelativistic velocities (speeds approaching that of light), and construction of particle accelerators of the necessary size is immensely costly.

To harness the advantages of synchrotron radiation for general use in medicine, physicists at LMU, the MPQ and the TUM have been exploring the application of high-performance lasers to the production of X-rays. In their set-up, hydrogen atoms are irradiated with extremely intense pulses of laser light. The highly energetic optical fields strip the electrons from the atoms and part of the ionized plasma electrons are accelerated.

Simultaneously, these electrons oscillate in the plasma fields, which causes them to emit the desired synchrotron radiation, i.e. high-intensity X-rays. Moreover, this whole process takes place over a path-length of less than 15 mm. So laser-based X-ray sources have a far smaller footprint, and are much less expensive to build, than conventional synchrotrons, but produce X-radiation of comparable quality.

In the early trials carried out at the Max Planck Institute in 2015, the research team was able to derive the three-dimensional structure of an insect from two-dimensional projection images taken from different angles. For the latest experiments, performed in the Laboratory for Extreme Photonics, Prof. Stefan Karsch and his colleagues have boosted the pulse rate, photon yield and photon energies, and this time they chose to image a sample of human bone. Thanks to an improved processing algorithm, developed by Prof. Franz Pfeiffer and his group at the TUM, the team needed to collect significantly less data than before. Accordingly, the complete tomogram could be obtained within less than three minutes.

The project was conceived and initiated in the Munich-Centre for Advanced Photonics (a Cluster of Excellence) and is undergoing further development at the Center for Advanced Laser Applications (CALA) in Garching. The laser systems available at CALA are expected to significantly enhance the efficiency of the source and the quality of the radiation generated, thus making this new form of tomography available for clinical applications for the first time. Thorsten Naeser

Figure caption:
The further development of ATLAS, the high-performance laser in LMU’s Laboratory for Extreme Photonics, paved the way for the tomographic reconstruction of the three-dimensional fine structure of a bone sample within a few minutes. (Photo: Thorsten Naeser)

Original publications:

A.Döpp, L. Hehn, J. Götzfried, J. Wenz, M. Gilljohann, H. Ding, S. Schindler, F. Pfeiffer, and S. Karsch
Quick X-ray microtomography using a laser-driven betatron source
Optica Vol. 5, Issue 2, pp. 199-203 (2018) doi.org/10.1364/OPTICA.5.000199

J.Götzfried, A.Döpp, M.Gilljohann, H.Ding, S.Schindler, J.Wenz, L.Hehn, F.Pfeiffer, S.Karsch
Research towards high-repetition rate laser-driven X-ray sources for imaging applications
Nuclear Instruments and Methods A (2018), doi.org/10.1016/j.nima.2018.02.110

Contacts:

Dr. Andreas Döpp
Ludwig-Maximilians-Universität München
Chair of Experimental Physics-Laser Physics
85748 Garching, Germany
Phone: +49 (0)89 289 - 14170
E-mail: a.doepp@physik.uni-muenchen.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Magnetic tuning at the nanoscale
13.11.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht At future Mars landing spot, scientists spy mineral that could preserve signs of past life
13.11.2019 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnets for the second dimension

12.11.2019 | Machine Engineering

New efficiency world record for organic solar modules

12.11.2019 | Power and Electrical Engineering

Non-volatile control of magnetic anisotropy through change of electric polarization

12.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>