Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large, distant comets more common than previously thought

26.07.2017

Comets that take more than 200 years to make one revolution around the sun are notoriously difficult to study. Because they spend most of their time far from our area of the solar system, many "long-period comets" will never approach the sun in a person's lifetime. In fact, those that travel inward from the Oort Cloud--a group of icy bodies beginning roughly 300 billion kilometers away from the sun--can have periods of thousands or even millions of years.

NASA's Wide-field Infrared Survey Explorer (WISE) spacecraft has delivered new insights about these distant wanderers. A team of astronomers led by James Bauer, a research professor of astronomy at the University of Maryland, found that there are about seven times more long-period comets measuring at least 1 kilometer across than previously predicted.


A new study suggests that distant "long-period" comets -- which take more than 200 years to orbit the sun -- are more common than previously thought. This illustration shows how the researchers used data from NASA's Wide-field Infrared Survey Explorer (WISE) spacecraft to determine the nucleus sizes of several of these distant comets. They subtracted a model of how dust and gas behave in comets in order to obtain the core size.

Credit: NASA/JPL-Caltech

The researchers also found that long-period comets are, on average, nearly twice as large as "Jupiter family" comets, whose orbits are shaped by Jupiter's gravity and have periods of less than 20 years. The findings were published July 14, 2017, in The Astronomical Journal.

"The number of comets speaks to the amount of material left over from the solar system's formation," Bauer said. "We now know that there are more relatively large chunks of ancient material coming from the Oort Cloud than we thought."

... more about:
»Cloud »Comets »Jupiter »Propulsion »solar system

The Oort Cloud is too distant to be seen by current telescopes, but is thought to be a spherical distribution of small icy bodies at the outermost edge of the solar system. The density of comets within it is low, so the odds of comets colliding within it are low. Long-period comets that WISE observed probably got kicked out of the Oort Cloud millions of years ago. The observations were carried out in 2010 during the spacecraft's primary mission, before it was renamed NEOWISE and reactivated to target near-Earth objects (NEOs) in 2013.

"Our study is a rare look at objects perturbed out of the Oort Cloud," said Amy Mainzer, a co-author of the study based at NASA's Jet Propulsion Laboratory in Pasadena, California and principal investigator of the NEOWISE mission. "They are the most pristine examples of what the solar system was like when it formed."

Astronomers already had broader estimates of how many long-period and Jupiter family comets are in our solar system, but had no good way of measuring the sizes of long-period comets. This is because the cloud of gas and dust that surrounds each comet--known as a coma--appears hazy in images and obscures the comet's nucleus.

By using WISE data that shows the infrared glow of the coma, the scientists were able to "subtract" the coma from each comet and estimate the size of the nucleus. The data came from WISE observations of 164 cometary bodies--including 95 Jupiter family comets and 56 long-period comets.

The results reinforce the idea that comets that pass by the sun more frequently tend to be smaller than those spending much more time away from the sun. That is because Jupiter family comets get more heat exposure, which causes volatile substances like water to sublimate and drag away other material from the comet's surface as well.

"Our results mean there's an evolutionary difference between Jupiter family and long-period comets," Bauer said.

The existence of so many more long-period comets than predicted suggests that more of them have likely impacted planets, delivering icy materials from the outer reaches of the solar system.

Researchers also found clustered orbits among the long-period comets they studied, suggesting there could have been larger bodies that broke apart to form these groups.

The results will be important for assessing the likelihood of comets impacting our solar system's planets, including Earth.

"Comets travel much faster than asteroids, and some of them are very big," Mainzer said. "Studies like this will help us define what kind of hazard long-period comets may pose."

NASA's Jet Propulsion Laboratory in Pasadena, California, managed and operated WISE for NASA's Science Mission Directorate in Washington, D.C. The NEOWISE project is funded by the Near-Earth Object Observation Program, now part of NASA's Planetary Defense Coordination Office. The spacecraft was put into hibernation mode in 2011 after twice scanning the entire sky, thereby completing its main objectives. In September 2013, WISE was reactivated, renamed NEOWISE and assigned a new mission to assist NASA's efforts to identify potentially hazardous near-Earth objects.

###

This press release was adapted from text provided by NASA's Jet Propulsion Laboratory.

This research was supported by NASA (Award No. NNA09DA77A). The content of this article does not necessarily reflect the views of this organization.

The research paper, "Debiasing the NEOWISE Cryogenic Mission Comet Populations," James Bauer, Tommy Grav, Yanga Fernández, Amy Mainzer, Emily Kramer, Joseph Masiero, Timothy Spahr, Carolyn Nugent, Rachel Stevenson, Karen Meech, Roc Cutri, Carey Lisse, Russell Walker, John Dailey, Joshua Rosser, Phillip Krings, Kinjal Ruecker, Edward Wright and the NEOWISE Team, was published in The Astronomical Journal on July 14, 2017.

Media Relations Contacts:

NASA's Jet Propulsion Laboratory: Elizabeth Landau, 818-354-6425, elizabeth.landau@jpl.nasa.gov

University of Maryland: Matthew Wright, 301-405-9267, mewright@umd.edu

University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, MD 20742
http://www.cmns.umd.edu
@UMDscience

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 7,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $150 million.

Media Contact

Matthew Wright
mewright@umd.edu
301-405-9267

 @UMDRightNow

http://www.umdrightnow.umd.edu/ 

Matthew Wright | EurekAlert!

Further reports about: Cloud Comets Jupiter Propulsion solar system

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>