Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


IPP launches new centre for plasma astrophysics


Munich Center for Plasma Astrophysics / in collaboration with the excellence cluster ORIGINS

The Helmholtz Excellence Network “Munich Center for Plasma Astrophysics” headed by Professor Frank Jenko from the Max Planck Institute for Plasma Physics (IPP) in Garching near Munich will commence its work on 1 May.

Supercomputer simulation of the movement of energy-rich particles in astrophysical plasma turbulence.

(Graphic: Daniel Grošelj, IPP)

The Center is being funded with around a million euros by the Helmholtz Association of German Research Centres. The main objective will be to contribute to the excellence cluster ORIGINS through studies relating to plasma astrophysics.

Understanding the evolution of the universe all the way from the Big Bang to the emergence of life – this is one of the biggest challenges in science. To this topic the excellence cluster ORIGINS devotes itself, one of the successful candidates in what is now the third round of funding from the “excellence initiative” launched by the federal administration and federal states to promote research.

In addition to Munich’s two universities, ORIGINS also counts the Max Planck Institutes for Astrophysics, Biochemistry, Extraterrestrial Physics, Physics and Plasma Physics, as well as further institutions in Munich and Garching among its participants.

The preliminary scientific work for IPP’s application for ORIGINS has already received over EUR 350,000 in support from the Helmholtz Association of German Research Centres, to which IPP is affiliated as an associated institute.

With the Helmholtz Excellence Network “Munich Center for Plasma Astrophysics”, this work will enter a new phase from May 2019: the Helmholtz Association is providing around a million euros in funding for establishing and maintaining of a group of IPP scientists, which will contribute to ORIGINS by building on the preliminary work carried out so far.

Black holes and cosmic accelerators – plasma is everywhere

“Of the issues addressed by ORIGINS, IPP is particularly interested in investigating turbulent flows and high-energy particles,” says IPP scientist Professor Frank Jenko, who leads the Helmholtz Excellence Network. Although gravity plays a central role in astrophysics, it is not the sole driver of dynamics and self-organization in the universe. A large part of the energy is found in magnetic fields or cosmic radiation, and the overwhelming proportion of visible space is made up of turbulent plasma.

Plasma turbulence is the key, for example, to understanding the glowing plasma disks around supermassive black holes – one of which was recently imaged for the first time in the star system M87. Plasmas are also behind the enormous speeds of cosmic ray particles with energies billions of times larger than achievable with the largest accelerators on earth.

“Topics such as this fall within the fascinating area of plasma astrophysics,” says Frank Jenko: “Similar processes also play an important role in IPP’s fusion experiments, as do self-organization processes far from thermodynamic equilibrium, which are omnipresent both in space and in laboratory plasmas.”

In order to predict its behaviour, the complex plasma system can be described using fundamental nonlinear equations, which can usually only be solved using elaborate computer simulations. As a world leader in this area, IPP will contribute its expertise to ORIGINS and turn it to practical use in close collaboration with the field of astrophysics.

Frank Jenko anticipates that this will help to build numerous bridges between fusion experiments and the world of astrophysical observation: “The underlying plasma physical processes satisfy the same equations, whether they take place in the lab or in nature”.

IPP studies high-temperature plasmas in experiment and theory with a view to establishing the physical basis for a fusion power plant. Like the sun, a future power plant of this kind is intended to derive energy from the fusion of atomic nuclei. The fuel – a low-density, extremely hot hydrogen plasma – must be confined by magnetic fields so tightly that it floats in an almost contact-free manner within the interior of a vacuum chamber.

Weitere Informationen:

Isabella Milch | Max-Planck-Institut für Plasmaphysik

More articles from Physics and Astronomy:

nachricht A torque on conventional magnetic wisdom
23.07.2019 | University of Illinois College of Engineering

nachricht MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses
22.07.2019 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

Latest News

Hidden dynamics detected in neuronal networks

23.07.2019 | Life Sciences

Towards a light driven molecular assembler

23.07.2019 | Life Sciences

A torque on conventional magnetic wisdom

23.07.2019 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>