Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ion ping pong reveals forces in atomic nuclei

20.06.2013
An international team of scientists has succeeded in determining the binding energies of exotic atomic nuclei by use of a multi-reflection time-of-flight mass spectrometer.

As reported in the journal Nature, important conclusions about the nature of the forces between the protons and neutrons in nuclei can be drawn by comparing the experimental results and new theoretical values. The difficult measurements were made possible by an extension to the precision experiment ISOLTRAP at the European research centre CERN.


Ion ping pong.
Figure: Frank Wienholtz


Schematic Overview of the new ISOLTRAP component for multi-reflection time-of-flight mass spectrometry. The ions are reflected back and forth between the “mirrors” whereby the different ion species are separated. Figure: Frank Wienholtz

The new component, contributed by physicists from the University of Greifswald, reflects ions back and forth like in a ping pong game. Using this method the team was the first to determine the masses of the artificially produced isotopes calcium-53 and calcium-54.

These isotopes play a key role in basic research in nuclear physics. The measurements confirm predictions by theorists from the Technical University of Darmstadt that also account for three-body forces.

From the masses of atomic nuclei one can deduce – via Einstein‘s equation E=mc2 – the energies with which protons and neutrons are bound in the nucleus. Particularly high binding energies are found for nuclei with “magic“ proton and neutron numbers. These special values – 8, 20, 28, 50, 82 und 126 – have been well established for stable nuclei. In the case of exotic systems with short half-lives, however, present knowledge is very limited.
In order to improve the description, theoretical physicists from the Technical University of Darmstadt included three-body forces, which are determined by fits to the lightest elements, hydrogen and helium, only. Calculations at the Jülich Supercomputing Centre enabled them to predict the masses of much heavier calcium isotopes. Besides the known neutron shell closures at 20 and 28 the predictions for the masses show that 32 is an additional magic number.

Atomic nuclei, in which there is an extreme imbalance with respect to the numbers of protons and neutrons, are particularly sensitive to subtle components of nuclear forces. However, measuring such nuclei is extraordinarily difficult, because they can only be produced in tiny numbers and decay immediately, within the blink of an eye. Such particles are delivered as ion beams to the precision mass balance ISOLTRAP by the “isotope factory” ISOLDE at the European research centre CERN.

However, there is another challenge as the ions of interest are in general generated only together with “contaminations”, i.e. particles of similar masses, so-called isobars. Under these conditions Penning ion traps, up to now the micro scales of choice, reach their limits. Multi-reflection time-of-flight mass spectrometers offer an alternative. Such an instrument was provided by the team from the University of Greifswald and installed as part of the ISOLTRAP setup.

After a recent application as a high-resolution mass separator for Penning-trap investigations (see idw press release “Laboratory Mass Measurement deepens Insight into Neutron Star Crusts“ http://idw-online.de/en/news516628) the new device was successfully used to obtain the first mass measurements of calcium-53 and calcium-54.

The principle of time-of-flight mass spectrometry is rather simple: All ions experience the same force and are therefore accelerated to different velocities corresponding to their masses. Thus, after crossing a drift section they reach a detector one after the other – the light ones first and the heavier later. The result is a time-of-flight mass spectrum. Typical drift sections have a length of about a meter. But there is a trick: By use of an “ion mirror” the particles can be reflected and if a second mirror is added drift sections of several kilometres in length can be folded to table-top dimensions.

The ion ping pong of reflecting the particles several thousand times back and forth lasts only a few milliseconds. The procedure is much faster than the Penning-trap experiments and, in addition, needs fewer ions. This was the breakthrough, which allowed the confirmation of the predictions for the exotic calcium isotopes of the Darmstadt theory group. The successful application of the instrument from Greifswald establishes multi-reflection time-of-flight mass spectrometry as a next generation technology for the investigation of atomic nuclei.

The ion-trap setup ISOLTRAP was operated by researchers from CERN, the Max Planck Institute for Nuclear Physics at Heidelberg, the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt as well as from universities at Dresden, Greifswald, Istanbul (Turkey), Leuven (Belgium) and Orsay (France).
Original publication: http://dx.doi.org/10.1038/nature12226
Masses of exotic calcium isotopes pin down nuclear forces
F. Wienholtz, D. Beck, K. Blaum, Ch. Borgmann, M. Breitenfeldt, R.B. Cakirli, S. George, F. Herfurth, J.D. Holt, M. Kowalska, S. Kreim, D. Lunney, V. Manea, J. Menendez, D. Neidherr, M. Rosenbusch, L. Schweikhard, A. Schwenk, J. Simonis, J. Stanja, R. N. Wolf, K. Zuber, Nature 498 (2013)
Contacts

Dipl.-Phys. Frank Wienholtz and Prof. Dr. Lutz Schweikhard
Institute of Physics of the Ernst-Moritz-Arndt University Greifswald
Felix-Hausdorff-Str. 6, 17487 Greifswald, Germany
Telephone +49 3834 86-4700
wienholtz@physik.uni-greifswald.de
lschweik@physik.uni-greifswald.de
http://www6.physik.uni-greifswald.de/index.html
Prof. Dr. Achim Schwenk
Institut für Kernphysik, Theoriezentrum
Technische Universität Darmstadt
Schlossgartenstr. 2, 64289 Darmstadt, Germany
Telephone +49 6151 16-64235
schwenk@physik.tu-darmstadt.de
http://theorie.ikp.physik.tu-darmstadt.de/strongint/
Spokesperson of the ISOLTRAP collaboration
Prof. Dr. Klaus Blaum
Max Planck Institute for Nuclear Physics
Saupfercheckweg 1, 69117 Heidelberg, Germany
Telephone +49 6221 516850
klaus.blaum@mpi-hd.mpg.de
http://www.mpi-hd.mpg.de/blaum/index.de.html

ISOLTRAP’s local coordinator at CERN
Dr. Susanne Kreim
CERN, bat. 3-1-070, 1211 Geneva 23, Switzerland
Telephone +41 22 7672646
susanne.waltraud.kreim@cern.ch
http://isoltrap.web.cern.ch/

Jan Meßerschmidt | idw
Further information:
http://dx.doi.org/10.1038/nature12226
http://www.uni-greifswald.de

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>