Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International astronomers reveal first image of event horizon of super-massive black hole

11.04.2019

UMass Amherst research delegation is in Washington, D.C., for announcement

Today, in coordinated press conferences across the globe including one at National Science Foundation in Washington, D.C., an international team of astronomers including a team from the University of Massachusetts Amherst reveal that they have succeeded in unveiling the first direct visual evidence of a supermassive black hole and its shadow.


The Event Horizon Telescope used telescopes at the South Pole and in Chile, Mexico, Spain, Hawaii and Arizona. The instrument array includes the Large Millimeter Telescope (LMT) in Mexico, operated jointly by the University of Massachusetts Amherst and Mexico's Instituto Nacional de Astrofísica, Óptica y Electrónica.

Credit: INAOE/UMass Amherst

To accomplish this feat, they coordinated eight ground-based radio telescopes around the world to form one Earth-sized Event Horizon Telescope (EHT), an array specially designed and finely networked to capture images of a black hole.

This breakthrough was announced today in a series of six papers published in a special issue of The Astrophysical Journal Letters. The main image reveals the black hole at the center of Messier 87 (M87), a massive galaxy in the nearby Virgo galaxy cluster 55 million light-years from Earth. It has a mass 6.5-billion times that of the Sun.

NSF director France Córdova said, "This is a huge day in astrophysics. We're seeing the unseeable. Black holes have sparked imaginations for decades. They have exotic properties and are mysterious to us. Yet with more observations like this one they are yielding their secrets. This is why NSF exists. We enable scientists and engineers to illuminate the unknown, to reveal the subtle and complex majesty of our universe."

The EHT used telescopes at the South Pole and in Chile, Mexico, Spain, Hawaii and Arizona. The instrument array includes the Large Millimeter Telescope (LMT) in Mexico, operated jointly by the University of Massachusetts Amherst and Mexico's Instituto Nacional de Astrofísica, Óptica y Electrónica.

Astronomy professor Gopal Narayanan, principal investigator for UMass Amherst's EHT mission, specializes in building spectroscopic imaging instruments and led the team building two radio astronomy receivers used to collect EHT data at the LMT. Because of its central geographical location and large aperture, the LMT has been critical to the success of the EHT array, Narayanan says.

Also in the UMass Amherst delegation in Washington today are Vice Chancellor for Research and Engagement Michael Malone, UMass Amherst's LMT principal investigator professor Peter Schloerb and astronomy graduate student Aleks Popstefanija. The UMass Amherst astronomers are co-authors on all six papers being released today.

Narayanan points out that one of the exciting areas of modern astrophysics is the notion that in and around the singularity of space-time of black holes, the macroscopic world collides with the microscopic world. For example, physicist Stephen Hawking has conjectured that black holes are ideal laboratories where the concepts of quantum mechanics and general relativity can be melded into a grand unified theory of fundamental concepts.

Narayanan says, "The place to study that is at the event horizon of a black hole. By detecting this one, we get to the point where we can test some of these theories and start to identify the fundamental laws that order the universe."

The EHT observations allowed astronomers to look at the very heart of a super massive black hole and the event horizon surrounding it. As Hawking pointed out, material falling into a black hole poses an "information paradox," because the information carried in the particles falling into the black hole seem forever lost to the universe.

"That goes against the conservation laws of physics," Narayanan says. Future EHT observations may be able help test some of the interesting theories on the problem of information paradox.

The EHT observations reveal the image of black hole at the center of Messier 87 (M87), a massive galaxy in the nearby Virgo galaxy cluster. This black hole is 55 million light-years from Earth and has a mass 6.5 billion times that of the Sun. The new M87 event horizon image shows an asymmetric ring-like structure around a central dark region.

Theories predicted that the massive gravitational potential of the central super-massive black hole would bend and capture the light emanated from the hot gas swirling at near the speed of light around the event horizon of the black hole, Narayanan explains.

He adds, "The experiment was set up so that we expected to see this happen and, by golly, we did! These observations are the million-dollar images that confirm the theory." This experiment also yielded the first best evidence that super massive black holes exist at a size of not just 20 or 30 solar masses, but millions and billions of solar masses. The observations indicated a 6.5 billion solar mass object within the confines of the event horizon imaged.

Together, the discoveries give "a shot in the arm to theorists," Narayanan points out, because it lets them test which of their ideas is supported by observable evidence. "It's very gratifying and immensely exciting to see the results coming out after years of work," he adds. "At times it looked like an impossible task. But we showed that you can collaborate on this scale and get results. The camaraderie and team spirit was a wonderful thing to see."

Further, "During the stress and strain of observing at night and in the cold, there were jokes amidst all the technical problems. I'd be helping someone out in Hawaii or Chile while we discussed some technical issues online. It wasn't just telescopes collaborating, it was a lot of young people, women, minorities, many people doing a lot of hard work. It's been an amazing effort."

Media Contact

Janet Lathrop
jlathrop@umass.edu
413-545-2989

 @umassscience

http://www.umass.edu 

Janet Lathrop | EurekAlert!

More articles from Physics and Astronomy:

nachricht 4D imaging with liquid crystal microlenses
20.11.2019 | American Chemical Society

nachricht Outback telescope captures Milky Way center, discovers remnants of dead stars
20.11.2019 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>