Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble delivers first hints of possible water content of TRAPPIST-1 planets

01.09.2017

An international team of astronomers used the NASA/ESA Hubble Space Telescope to estimate whether there might be water on the seven earth-sized planets orbiting the nearby dwarf star TRAPPIST-1. The results suggest that the outer planets of the system might still harbour substantial amounts of water. This includes the three planets within the habitable zone of the star, lending further weight to the possibility that they may indeed be habitable.

On 22 February 2017 astronomers announced the discovery of seven Earth-sized planets orbiting the ultracool dwarf star TRAPPIST-1, 40 light-years away [1]. This makes TRAPPIST-1 the planetary system with the largest number of Earth-sized planets discovered so far.


This artist's impression shows the view from the surface of one of the planets in the TRAPPIST-1 system. At least seven planets orbit this ultracool dwarf star 40 light-years from Earth and they are all roughly the same size as the Earth. Several of the planets are at the right distances from their star for liquid water to exist on the surfaces.

Credit: ESO/N. Bartmann/spaceengine.org

Following up on the discovery, an international team of scientists led by the Swiss astronomer Vincent Bourrier from the Observatoire de l'Université de Genève, used the Space Telescope Imaging Spectrograph (STIS) on the NASA/ESA Hubble Space Telescope to study the amount of ultraviolet radiation received by the individual planets of the system. "Ultraviolet radiation is an important factor in the atmospheric evolution of planets," explains Bourrier. "As in our own atmosphere, where ultraviolet sunlight breaks molecules apart, ultraviolet starlight can break water vapour in the atmospheres of exoplanets into hydrogen and oxygen."

While lower-energy ultraviolet radiation breaks up water molecules -- a process called photodissociation -- ultraviolet rays with more energy (XUV radiation) and X-rays heat the upper atmosphere of a planet, which allows the products of photodissociation, hydrogen and oxygen, to escape.

As it is very light, hydrogen gas can escape the exoplanets' atmospheres and be detected around the exoplanets with Hubble, acting as a possible indicator of atmospheric water vapour [2]. The observed amount of ultraviolet radiation emitted by TRAPPIST-1 indeed suggests that the planets could have lost gigantic amounts of water over the course of their history.

This is especially true for the innermost two planets of the system, TRAPPIST-1b and TRAPPIST-1c, which receive the largest amount of ultraviolet energy. "Our results indicate that atmospheric escape may play an important role in the evolution of these planets," summarises Julien de Wit, from MIT, USA, co-author of the study.

The inner planets could have lost more than 20 Earth-oceans-worth of water during the last eight billion years. However, the outer planets of the system -- including the planets e, f and g which are in the habitable zone -- should have lost much less water, suggesting that they could have retained some on their surfaces [3]. The calculated water loss rates as well as geophysical water release rates also favour the idea that the outermost, more massive planets retain their water. However, with the currently available data and telescopes no final conclusion can be drawn on the water content of the planets orbiting TRAPPIST-1.

"While our results suggest that the outer planets are the best candidates to search for water with the upcoming James Webb Space Telescope, they also highlight the need for theoretical studies and complementary observations at all wavelengths to determine the nature of the TRAPPIST-1 planets and their potential habitability," concludes Bourrier.

###

Notes

[1] The planets were discovered using: the ground-based TRAPPIST-South at ESO's La Silla Observatory in Chile; the orbiting NASA Spitzer Space Telescope; TRAPPIST-North in Morocco; ESO's HAWK-I instrument on the Very Large Telescope at the Paranal Observatory in Chile; the 3.8-metre UKIRT in Hawaii; the 2-metre Liverpool and 4-metre William Herschel telescopes at La Palma in the Canary Islands; and the 1-metre SAAO telescope in South Africa.

[2] This part of an atmosphere is called the exosphere. Earth's exosphere consists mainly of hydrogen with traces of helium, carbon dioxide and atomic oxygen.

[3] Results show that each of these planets have may have lost less than three Earth-oceans of water.

More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The team of the study is composed of V. Bourrier (Observatoire de l'Université de Genève, Switzerland), J. de Witt (Massachusetts Institute of Technology, USA), E. Bolmont (Laboratoire AIM Paris-Saclay), V. Stamenkovic (Jet Propulsion Laboratory, USA; California Institute of Technology, USA), P. J. Wheatley (University of Warwick, UK), A. J. Burgasser (University of California San Diego, USA), L. Delrez (Cavendish Laboratory, UK), B.-O. Demory (University of Bern, Switzerland), D. Ehrenreich (Observatoire de l'Université de Genève, Switzerland), M. Gillon (Université de Liège, Belgium), E. Jehin (Université de Liège, Belgium), J. Leconte (Université Bordeaux, France), S. M. Lederer (NASA Johnson Space Center, USA), N. Lewis (Space Telescope Science Institute, USA), A. H. M. J. Triaud A. H. M. J. Triaud (Institute of Astronomy, Cambridge, UK, now at University of Birmingham, UK) and V. van Grootel (Université de Liege, Belgium)

Image credit: NASA, ESA, ESO

Links

* Images of Hubble - http://www.spacetelescope.org/images/archive/category/spacecraft/

* ESO release on the discovery of the planets - http://www.eso.org/public/news/eso1706/

* Science paper - http://www.spacetelescope.org/static/archives/releases/science_papers/heic1713/heic1713a.pdf

* Webpage on TRAPPIST-1 - http://www.trappist.one/

* University Geneva press release (french) - https://www.unige.ch/communication/communiques/2017/cdp300817/

Contacts

Vincent Bourrier
Observatoire de l'Université de Genève
Sauverny, Switzerland
Tel: +41 22 379 24 49
Email: vincent.bourrier@unige.ch

Julien de Wit
Massachusetts Institute of Technology
Cambridge, USA
Tel: +1 617 258 0209
Email: jdewit@mit.edu

Mathias Jäger
ESA/Hubble, Public Information Officer
Garching bei Múnchen, Germany
Tel: +49 176 62397500
Email: mjaeger@partner.eso.org

http://www.spacetelescope.org 

Mathias Jäger | EurekAlert!

Further reports about: Atmosphere ESA Hubble NASA Space Telescope Telescope exoplanets ultraviolet radiation

More articles from Physics and Astronomy:

nachricht Supercomputers without waste heat
07.12.2018 | Universität Konstanz

nachricht DF-PGT, now possible through massive sequencing techniques
06.12.2018 | Universitat Autonoma de Barcelona

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>