Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-performance microring resonator developed by INRS researchers

10.02.2010
New step toward ultra-fast optical communications

A new, more efficient low-cost microring resonator for high speed telecommunications systems has been developed and tested by Professor Roberto Morandotti's INRS team in collaboration with Canadian, American, and Australian researchers.

This technological advance capitalizes on the benefits of optical fibers to transmit large quantities of data at ultra-fast speeds. The results of the team's work, just published in the prestigious journal Nature Photonics, will facilitate the transition from electronic to optical communications, the future solution for meeting the growing needs of Internet and cellphone users.

The microring resonator investigated by Professor Morandotti's team at INRS's Energy, Materials, and Telecommunications Center in Varennes, Quebec, and by his colleagues, offers several advantages. Made from a special glass with exceptional optical properties, this key signal transmission component can be incorporated into the microchips used extensively in telecommunications systems. Furthermore, it is fabricated using the same methods as those employed by silicon chip manufacturers, thereby reducing optical component costs and making the technology more affordable.

The new resonator has the additional advantage of using a single low-power laser source to obtain multiple wavelengths, unlike existing devices that require very high optical power, or different devices. Furthermore, Professor Morandotti and his team have been successful in generating a new multiple-wavelength laser source at a threshold optical power level as low as ~54mW, setting a new world record for glass devices in the process.

This technological breakthrough is crucial because it comes as electronic devices are reaching their data transmission capacity limit, whereas optical fibers offer much greater capacity and better transmission quality. In addition to revolutionizing the world of telecommunications, INRS researchers are helping create new applications in the fields of detection and metrology, including measurement applications in physics and computers, as well as instrument calibration and adjustment.

The articles published in Nature Photonics are available at:
http://www.nature.com/nphoton/journal/v4/n1/abs/nphoton.2009.236.html
http://www.nature.com/nphoton/journal/v2/n12/abs/nphoton.2008.228.html
References: "Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures", M. Ferrera, L. Razzari, D. Duchesne, and R. Morandotti, INRS-EMT, 1650 Boulevard Lionel Boulet, Varennes, Quebec, Canada, J3X 1S2; Zhenshan Yang, M. Liscidini, and J. Sipe, Dept. of Physics, University of Toronto, Canada; B. Little and S. Chu, Infinera Ltd., California, USA; David J. Moss, CUDOS, School of Physics, University of Sydney, Australia.

"CMOS-compatible integrated optical hyper-parametric oscillator", L. Razzari, D. Duchesne, M. Ferrera, and R. Morandotti, INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Quebec, Canada, J3X 1S2; B. Little and S. Chu, Infinera Ltd., California, USA; David J. Moss, CUDOS, School of Physics, University of Sydney, Australia.

INRS is a university dedicated to research and graduate studies. One of Canada's leading research universities in terms of research intensity, INRS brings together 160 research professors at centers in Montreal, Quebec City, Laval, and Varennes. Conducting fundamental research essential to the advancement of science in Quebec as well as internationally, INRS research teams also play a critical role in developing concrete solutions to problems facing our society.

Gisèle Bolduc | EurekAlert!
Further information:
http://www.inrs.ca

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>