Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Germany joins the SKA Organisation

20.12.2012
The Board of Directors of the Square Kilometre Array (SKA) Organisation has approved Germany, represented by the Federal Ministry of Education and Research, as the tenth member of the organisation to participate in the detailed design of the SKA telescope.

Ten countries now involved in the pre-construction phase of the world’s largest telescope.


Artist's impression of SKA antennas of 15 m diameter each. SKA Organisation/Swinburne Astronomy Productions


The SKA World
SKA

The Board of Directors of the Square Kilometre Array (SKA) Organisation has approved Germany, represented by the Federal Ministry of Education and Research, as the tenth member of the organisation to participate in the detailed design of the SKA telescope.

The SKA will be the largest and most sensitive radio telescope ever built. It will enable astronomers to glimpse the formation and evolution of the very first stars and galaxies after the Big Bang, investigate the nature of gravity, and possibly even discover life beyond Earth.

Professor John Womersley, chair of the board of the SKA Organisation, welcomed Germany’s membership. “Germany has an excellent track record not only in radio astronomy but also in the management and delivery of science megaprojects and associated engineering. This expertise will be of great benefit to the SKA project as we move towards the construction phase of this inspirational telescope”, he said.

Dr Beatrix Vierkorn-Rudolph, Deputy Director General, Federal Ministry of Education and Research (BMBF), and Professor Michael Kramer, Director of Max-Planck-Institut für Radioastronomie, an institute of the Max-Planck-Gesellschaft (MPG), have been appointed to represent Germany on the SKA Board of Directors. The German contribution to the SKA Organisation amounts to 1 Million Euro.

“We live in an exciting time for science and the unprecedented scale of the multi-national SKA project ensures that we will continue to be able to push the boundaries of physics and astronomy. The SKA genuinely has the potential to completely transform our understanding of the universe as we know it today”, says Professor Kramer.

Germany joins the SKA Organisation at the end of what has been an exciting first year for the newly formed organisation. In May 2012 the members of the SKA Organisation agreed on a dual site for the SKA to maximise on investments already made at the candidate sites in Australia and South Africa. Both sites offer exceptionally radio quiet environments for detecting very faint radio waves from the early universe and many thousands of SKA receptors will soon be constructed across these two desert regions. In September Professor Philip Diamond was appointed as the first permanent Director General of the SKA Organisation and in November staff moved into the new purpose-built SKA headquarters at Jodrell Bank Observatory near Manchester in the UK.

As a member of the SKA Organisation, Germany has voting rights and is eligible to appoint two representatives to the Board of Directors. The SKA Board of Directors has the authority to appoint senior staff, decide budgets, admit new project partners to the organisation and direct the work of the global work package consortia in the SKA pre-construction phase.

Germany joins the existing members of the SKA Organisation: Australia, Canada, China, Italy, the Netherlands, New Zealand, South Africa, Sweden and the United Kingdom. India is an associate member.

About the SKA

The Square Kilometre Array will be the world’s largest and most sensitive radio telescope. The total collecting area will be approximately one square kilometre giving 50 times the sensitivity, and 10 000 times the survey speed, of the best current-day telescopes. The SKA will be built in Southern Africa and in Australia. Thousands of receptors will extend to distances of 3 000 km from the central regions. The SKA will address fundamental unanswered questions about our Universe including how the first stars and galaxies formed after the big bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth. Construction of Phase one of the SKA is scheduled to start in 2016. The SKA Organisation, with its headquarters at Jodrell Bank Observatory, near Manchester, UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and centralise the leadership of the project.

Members of the SKA Organisation as of December 2012:

Australia: Department of Innovation, Industry, Science and Research
Canada: National Research Council
China: National Astronomical Observatories, Chinese Academy of Sciences
Germany: Federal Ministry of Education and Research
Italy: National Institute for Astrophysics
Netherlands: Netherlands Organisation for Scientific Research
New Zealand: Ministry of Economic Development
Republic of South Africa: National Research Foundation
Sweden: Onsala Space Observatory
United Kingdom: Science and Technology Facilities Council
Associate member:
India: National Centre for Radio Astrophysics
Prof. Dr. Michael Kramer,
Max-Planck-Institut für Radioastronomie, Bonn
Telefon: +49 228 525-278
Fax: +49 228 525-436
E-Mail: mkramer@­mpifr-bonn.mpg.de
Dr. Norbert Junkes,
Press and Public Relations
Max-Planck-Institut für Radioastronomie, Bonn
Telefon: +49 228 525-399
Fax: +49 228 525-438
E-Mail: njunkes@­mpifr-bonn.mpg.de
William Garnier,
SKA Organisation
Chief Communications Officer
Telefon: +44 161 306-9613
E-Mail: w.garnier@­skatelescope.org

Norbert Junkes | Max-Planck-Institut
Further information:
http://www.­mpifr-bonn.mpg.de
http://www.mpifr-bonn.mpg.de/99606/news_publication_6728490?c=2169

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>