Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From molecules to organic light emitting diodes

08.04.2015

Scientists at the MPI-P Mainz, BASF Ludwigshafen, the University of Ulm, and Innovation Lab Heidelberg have developed a simulation toolkit for evaluating properties of organic light emitting diodes (OLEDs) based solely on their chemical composition. The package is integrated in the free software VOTCA and helps to pre-select suitable organic molecules for lighting and display applications.

The research group headed by Dr. Denis Andrienko, project leader at the Max Planck Institute for Polymer Research (Theory department, director Prof. Kurt Kremer) has developed a set of multiscale simulation techniques which predict macroscopic properties of an organic light emitting diode (OLED) from its chemical composition.


Possible workflows of parameter-free OLED simulations: polarizable force-fields and electronic properties of isolated molecules obtained from first principles are used to generate amorphous morphologies and evaluate charge transfer rates in small systems (microscopic models). Coarse-grained models are parametrized either by matching macroscopic observables, e.g., charge mobility, of the microscopic and coarse-grained (lattice) models. The resulting analytical expressions for mobility are then used to solve drift-diffusion equations for the entire device, after incorporating long-range electrostatic effects and electrodes. Alternatively, off-lattice models can be developed by matching distributions and correlations of site energies, electronic couplings, and positions of molecules. The master equations for this model can be solved using the kinetic Monte Carlo algorithm, yielding macroscopic characteristics of a device.

© AFM

The link between the molecular and mesoscopic scales became possible by combining advanced coarse-graining techniques with efficient simulation algorithms (see Figure). Implemented, among others, by the PhD candidate Pascal Kordt and postdoctoral fellow Dr. Jeroen van der Holst, this development facilitated computer simulations of electron and exciton motion in about 100 nanometer-thick OLED layers, i.e. macroscopically large, yet microscopically-resolved systems.

The developed methods are reviewed in the feature article “Modeling of Organic Light Emitting Diodes: From Molecular to Device Properties” of Advanced Functional Materials, and highlighted as a cover page.

Denis Andrienko explains how useful the software is to the organic semiconductors industry: “Modern mobile phones already use OLED (AMOLED), and large OLED-based TV screens are entering the market. Yet, the materials design for these applications often progresses via the trial-and-error strategy”, he explains.

“In our approach both atomistic morphologies of amorphous OLED layers and charge motion are predicted solely from molecular structures. In contrast to experiments, OLED properties are then directly linked to the underlying chemistry and material morphology.”

The expectation, backed up by the European Research Council and financially supported by the German Ministry for Education and Research (grant MESOMERIE, FKZ 13N10723), is that the computer-based design will rapidly grow in the coming years, allowing companies to save money on synthesis and characterization of new materials.

Interestingly, the 2014 Nobel Prize in Physics was awarded to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura for the invention of efficient blue light-emitting diodes, or LEDs. LEDs are by now used as signal lights in alarm clocks, entertainment devices, flashlights, and more recently in large-area displays, where tiny red, green, and blue LEDs form a pixel. Millions of pixels are employed to display an image.

In every pixel electrons constantly recombine with their counterparts (holes) and form photons, the elementary particle of light. Depending on the material, these photons have different energy, or wavelength, which then determines the light color. LEDs are made of inorganic materials and are therefore exceptionally stable. Recent developments in organic semiconductors illustrated that organic semiconductors can provide complementary material properties, e.g. high contrast ratios, curved shapes, or mechanical flexibility (bendable and foldable displays).

The task of computer simulations is to help designing new materials for OLEDs. Even with modern supercomputers, however, it is impossible to simulate an OLED with the full atomistic detail. To remedy the situation, multiscale schemes are employed: properties of a single molecule are evaluated using first principle methods.

Subsequently, a classical molecular model is parameterized and used to study systems of thousands molecules. OLED layers, however, consist of 100 nanometer thick layers (millions of molecules). In VOTCA, an intermediate stochastic model is introduced, which reproduces distributions of important microscopic properties (e.g. distances between molecules), and is then employed to simulate an entire OLED device.

In spite of the clear roadmap in designing new materials for OLEDs, the methods and code development are always “under construction”, which makes it an interesting and exciting research topic.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/molecules_to_OLED - Press release and original publication
http://www2.mpip-mainz.mpg.de/~andrienk/ - Information about Dr. Andrienko and his research
http://www.mpip-mainz.mpg.de/home/en - Max Planck Institute for Polymer Research

Natacha Bouvier | Max-Planck-Institut für Polymerforschung

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Controlling organ growth with light

19.11.2018 | Life Sciences

New way to look at cell membranes could change the way we study disease

19.11.2018 | Life Sciences

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>