Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From car engines to exoplanets

05.04.2018

Chemical models developed to help limit the emission of pollutants by car engines are being used to study the atmospheres of hot exoplanets orbiting close to their stars. The results of a collaboration between French astronomers and applied combustion experts will be presented by Dr Oliva Venot and Dr Eric Hébrard at the European Week of Astronomy and Space Science (EWASS) 2018 in Liverpool.

Large planets similar to Neptune or Jupiter, orbiting 50 times closer to their star than the Earth does from the Sun, are thought to be composed of hydrogen-rich gas at temperatures between one and three thousand degrees Celsius, circulating at enormous speeds of nearly 10,000 kilometres per hour.


This is an artist's impression showing a Jupiter-like transiting planet around a solar-like host star.

Credit: ESO/L. Calçada

With these extreme conditions, the interplay of various physical processes, such as vertical transport, circulation or irradiation, can drive the atmospheres of these hot exoplanets out of chemical equilibrium, resulting in deviations that are difficult to explain through standard astrophysical models and observations.

Venot, of the Laboratoire Interuniversitaire des Systèmes Atmosphériques, explains: "The philosophy of our team in solving problems is to search for and import well-tried methods from any other field whenever they exist. Back in 2012, we first noticed the overlap of temperature and pressure conditions between the atmospheres of hot Jupiters and car engines.

Chemical networks developed for car engines are very robust as a result of years of intense R&D, laboratory studies and validation through comparison with numerous measurements performed under various conditions. The car models are valid for temperatures up to over 2,000 degrees Celsius and a wide range of pressures, so are relevant to the study of a large diversity of warm and hot exoplanet atmospheres."

The project grew out of an initial collaboration between the Laboratoire d'Astrophysique de Bordeaux and the Laboratoire Réactions et Génie des Procédés in Nancy. Over the past six years, the team has developed models of the chemical composition of hot Jupiter and warm Neptune atmospheres based on one or several networks of chemical reactions. These chemical networks have been made available through an open access database and are now widely used and recognised in the international astrophysics community.

"It is an important part of our team's philosophy to make input data and tools available to the community," says Hébrard, of the University of Exeter.

In addition to car testing, the team has also drawn on the expertise of researchers working on particle accelerators. Data on the ability of molecules to absorb ultraviolet light have, to date, been available mainly at room temperature. Experiments at synchrotron facilities at the Laboratoire Interuniversitaire des Systèmes Atmosphériques will enable measurements to be made at temperatures relevant for exoplanet atmospheres.

"Other fields of research have an important role to play in the characterisation of the fantastic diversity of worlds in the Universe and in our understanding of their physical and chemical nature," says Venot.

Media Contact

Anita Heward
ewass-press@ras.ac.uk
44-775-603-4243

 @@royalastrosoc

http://www.ras.org.uk/ras 

Anita Heward | EurekAlert!

More articles from Physics and Astronomy:

nachricht Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

nachricht Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>