Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme

16.03.2018

Fraunhofer Heinrich Hertz Institute HHI developed a distributed superchannel aggregation scheme to demonstrate ultra-wideband single-photodiode reception based on inherently polarization-aligned Kramers-Kronig (KK) carrier generation at the receiver. For optimized conditions, a record net capacity of 400 Gb/s was achieved using a distributedly aggregated superchannel of 3×33 GBd 32QAM sub-carriers.

The need to establish and implement high capacity, simplified and cost-effective direct-detection (DD) schemes for short reach systems, such as data center interconnect (DCI), is propelling optical communication industries to find innovative techniques to realize these goals.


Fraunhofer Heinrich Hertz Institute HHI developed a distributed superchannel aggregation scheme to demonstrate ultra-wideband single-photodiode reception based on inherently polarization-aligned Kramers-Kronig (KK) carrier generation at the receiver. For optimized conditions, a record net capacity of 400 Gb/s was achieved using a distributedly aggregated superchannel of 3×33 GBd 32QAM sub-carriers.

Contrary to other DD schemes, the single-polarization Kramers-Kronig technique allows the reception of complex modulation formats with a single photodiode by additionally using a Kramers-Kronig carrier, which needs to be polarization-aligned to the data signal. To avoid receiver-based polarization control, the KK carrier is usually co-generated at the transmitter.

In contrast to this already existing scheme, researchers at Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme, which is based on the generation of an inherently polarization-aligned Kramers-Kronig carrier in the receiver.

The combination of a distributed superchannel aggregation based on optical bus topology and the receiver-based KK carrier generation, enables KK reception of ultra-wideband signals without using ultra-wideband transmitters.

The researchers distributedly aggregate a 3×33 GBd superchannel spanning more than 100 GHz with a 495 Gb/s gross rate using the bus topology concept. In the scheme, a master continuous wave (CW) is propagated through the bus and collects locally generated sub-carriers (SCs) of each optical node along the bus. In the receiver, a similar node is used to generate the KK carrier.

As the polarizations of the superchannel and the generated KK carrier are determined by the state-of-polarization (SOP) of the incoming master CW, automatic polarization alignment of the KK carrier and the data is achieved without the need for polarization tracking.

Each SC in the superchannel was detected with error-free performance and a 400 Gb/s payload was achieved. This is the highest capacity reported so far for single-polarization single-photodiode KK reception.

By applying this technology to short reach and metro-haul optical networks (e.g., data center interconnect), the cost and complexity of the communications environment could be reduced.

Details of this technology were presented during OFC 2018.

Weitere Informationen:

https://www.hhi.fraunhofer.de/en/press-media/press-releases.html

Anne Rommel | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

More articles from Physics and Astronomy:

nachricht Junior scientists at the University of Rostock invent a funnel for light
27.03.2020 | Universität Rostock

nachricht Ultrafast and broadband perovskite photodetectors for large-dynamic-range imaging
23.03.2020 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

3D printer sensors could make breath tests for diabetes possible

27.03.2020 | Power and Electrical Engineering

TU Bergakademie Freiberg researches virus inhibitors from the sea

27.03.2020 | Life Sciences

The Venus flytrap effect: new study shows progress in immune proteins research

27.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>