Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First exposed planetary core discovered

01.07.2020

Researchers led by the University of Warwick have discovered the first exposed core of an exoplanet, which provides an unprecedented glimpse inside the interior of a planet. Christoph Mordasini from the University of Bern is leading the theoretical interpretation of this discovery.

The newly discovered exoplanet TOI 849 b offers the unique opportunity to peer inside the interior of a planet and learn about its composition. It orbits around a star about 730 light years away, which is very similar to our sun.


Artist’s impression showing a Neptune-sized planet in the Neptunian Desert. It is extremely rare to find an object of this size and density so close to its star.

© University of Warwick/Mark Garlick

The exposed core is the same size as Neptune in our solar system. The researchers assume that it is a gas giant that was either stripped of its gaseous atmosphere or that failed to fully form one in its early life due to special circumstances.

The study by the team led by Dr David Armstrong from the University of Warwick's Department of Physics is published today in the journal Nature. PD Dr. Christoph Mordasini from the University of Bern Physics Institute led the theoretical interpretation of the discovery.

A year that is a mere 18 hours

TOI 849 b is an extremely unusual planet in the so-called "Neptune Desert" – a term used by astronomers for a region close to stars where we rarely see planets of Neptune’s mass or larger. The lead author of the study, Dr. David Armstrong from the University of Warwick, says:

"The planet is strangely close to its star, considering its mass. In other words, we don’t see planets with this mass at these short orbital periods." TOI 849 b orbits so close to its host star that a year is a mere 18 hours and its surface temperature is around 1,500 °C.

Christoph Mordasini explains: "We have determined the planet's mass and radius. TOI-849b is about 40 times heavier than the earth, but its radius is just 3.4 earth radii." So the planet has a high density and therefore has to primarily consist of iron, rock and water, but only very little hydrogen and helium.

"Such a small amount of hydrogen and helium is really astonishing for such a massive planet. We would expect a planet this massive to have accreted large quantities of hydrogen and helium when it formed."

David Armstrong adds: "The fact that we don’t see those gases lets us know TOI 849 b is an exposed planetary core." This is the first time that an intact exposed core of a gas giant has been discovered around a star.

Bern's expertise in demand worldwide

The University of Bern has been continuously developing the "Bern Model of Planet Formation and Evolution" since 2003. Christoph Mordasini says: "In our model, we combine insights into the manifold processes involved in the formation and evolution of planets." Thanks to the world-renowned Bern model, discoveries such as those of the exoplanet TOI 849 b can be interpreted theoretically.

Based on the Bern model, two theories can be formulated which explain why TOI 849 b is not a typical gas giant but an exposed planetary core. "The first is that the exoplanet was once similar to Jupiter but lost nearly all of its outer gas through a variety of processes," Christoph Mordasini says.

These could include tidal disruption, where the planet is ripped apart from orbiting too close to its star, or even a collision with another planet. Large-scale photoevaporation of the atmosphere could also play a role, but can’t account for all the gas that has been lost.

Alternatively, TOI 849 b could be a "failed" gas giant. "Once the core of the gas giant formed then something very unusual could have happened and it never formed a massive atmosphere as normally. This could have occurred if there was a gap in the disk of dust and gas that the planet formed from due to gravitational interaction with the planet, or if the disk ran out of material right at the very moment when gas accretion normally follows," Mordasini adds.

David Armstrong says: "Our discovery proves that planets like this exist and we can track them down. We have the opportunity to look at the core of a planet in a way that we can’t do in our own solar system."

How TOI 849 b was discovered and analyzed

TOI 849 b was found in a survey of stars by NASA’s Transiting Exoplanet Survey Satellite (TESS), using the transit method: the satellite measures the brightness of a star. A dip in brightness indicates that a planet has passed in front of them.

TOI 849 b was then analyzed using the HARPS instrument built under Swiss leadership, at the European Southern Observatory’s La Silla Observatory in Chile. This utilizes the Doppler effect to measure the mass of exoplanets by measuring their ‘wobble’ – small movements towards and away from us that register as tiny shifts in the star’s spectrum of light.

"Bern Model of Planet Formation and Evolution"

Statements can be made about how a planet was formed and how it has evolved using the "Bern Model of Planet Formation and Evolution". The Bern model has been continuously developed at the University of Bern since 2003. Insights into the manifold processes involved in the formation and evolution of planets are integrated into the model.

These are, for example, submodels of accretion (growth of a planet's core) or of how planets interact gravitationally and influence each other, and of processes in the protoplanetary disks in which planets are formed. The model is also used to create so-called population syntheses, which show which planets develop how frequently under certain conditions in a protoplanetary disk.

The world-renowned Bern model is also used for the theoretical interpretation of discoveries such as that of the TOI 849 b exoplanet.

Wissenschaftliche Ansprechpartner:

PD Dr. Christoph Mordasini
Physics Institute, Space Research and Planetology (WP)
Direct line: +41 31 631 51 58
Email: christoph.mordasini@space.unibe.ch

Originalpublikation:

https://doi.org/10.1038/s41586-020-2421-7

Nathalie Matter | Universität Bern
Further information:
https://www.unibe.ch/news/media_news/media_relations_e/media_releases/2020/media_releases_2020/first_exposed_planetary_core_discovered/index_eng.html

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>