Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exiled stars explode far from home

05.06.2015

HST confirms 3 Type Ia supernovae were not part of a galaxy, but rare intracluster supernovae

Sharp images obtained by the Hubble Space Telescope confirm that three supernovae discovered several years ago exploded in the dark emptiness of intergalactic space, having been flung from their home galaxies millions or billions of years earlier.


This is an artist's concept of a Type Ia supernova exploding in the region between galaxies in a large cluster of galaxies, one of which is visible at the left.

Credit: Dr. Alex H Parker, NASA and the SDSS

Most supernovae are found inside galaxies containing hundreds of billions of stars, one of which might explode per century per galaxy.

These lonely supernovae, however, were found between galaxies in three large clusters of several thousand galaxies each. The stars' nearest neighbors were probably 300 light years away, nearly 100 times farther than our sun's nearest stellar neighbor, Proxima Centauri, 4.24 light years distant.

Such rare solitary supernovae provide an important clue to what exists in the vast empty spaces between galaxies, and can help astronomers understand how galaxy clusters formed and evolved throughout the history of the universe.

The solitary worlds reminded study leader Melissa Graham, a University of California, Berkeley, postdoctoral fellow and avid sci-fi fan, of the fictional star Thrial, which, in the Iain Banks novel Against a Dark Background, lies a million light years from any other star. One of its inhabited planets, Golter, has a nearly starless night sky.

Any planets around these intracluster stars - all old and compact stars that exploded in what are called Type Ia supernovae - were no doubt obliterated by the explosions, but they, like Golter, would have had a night sky depleted of bright stars, Graham said. The density of intracluster stars is about one-millionth what we see from Earth.

"It would have been a fairly dark background indeed," she said, "populated only by the occasional faint and fuzzy blobs of the nearest and brightest cluster galaxies."

Graham and her colleagues - David Sand of Texas Tech University in Lubbock, Dennis Zaritsky of the University of Arizona in Tucson and Chris Pritchet of the University of Victoria in British Columbia - will report their analysis of the three stars in a paper to be presented Friday, June 5, at a conference on supernovae at North Carolina State University in Raleigh. Their paper has also been accepted by the Astrophysical Journal.

Clusters of thousands of galaxies

The new study confirms the discovery between 2008 and 2010 of three apparently hostless supernovae by the Multi-Epoch Nearby Cluster Survey using the Canada-France-Hawaii Telescope on Mauna Kea in Hawaii. The CFHT was unable to rule out a faint galaxy hosting these supernovae. But the sensitivity and resolution of images from the Hubble Space Telescope's Advanced Camera for Surveys are 10 times better and clearly show that the supernovae exploded in empty space, far from any galaxy. They thus belong to a population of solitary stars that exist in most if not all clusters of galaxies, Graham said

While stars and supernovae typically reside in galaxies, galaxies situated in massive clusters experience gravitational forces that wrench away about 15 percent of the stars, according to a recent survey. The clusters have so much mass, though, that the displaced stars remain gravitationally bound within the sparsely populated intracluster regions.

Once dispersed, these lonely stars are too faint to be seen individually unless they explode as supernovae. Graham and her colleagues are searching for bright supernovae in intracluster space as tracers to determine the population of unseen stars. Such information provides clues about the formation and evolution of large scale structures in the universe.

"We have provided the best evidence yet that intracluster stars truly do explode as Type Ia supernovae," Graham said, "and confirmed that hostless supernovae can be used to trace the population of intracluster stars, which is important for extending this technique to more distant clusters."

Graham and her colleagues also found that a fourth exploding star discovered by CFHT appears to be inside a red, round region that could be a small galaxy or a globular cluster. If the supernova is in fact part of a globular cluster, it marks the first time a supernova has been confirmed to explode inside these small, dense clusters of fewer than a million stars. All four supernovae were in galaxy clusters sitting about a billion light years from Earth.

"Since there are far fewer stars in globular clusters, only a small fraction of the supernovae are expected to occur in globular clusters," Graham said. "This might be the first confirmed case, and may indicate that the fraction of stars that explode as supernovae is higher in either low-mass galaxies or globular clusters."

Graham said that most theoretical models for Type Ia supernovae involve a binary star system, so the exploding stars would have had a companion throughout their lifetimes.

"This is no love story, though," she added. "The companion was either a lower-mass white dwarf that eventually got too close and was tragically fragmented into a ring that was cannibalized by the primary star, or a regular star from which the primary white dwarf star stole sips of gas from its outer layers. Either way, this transfer of material caused the primary to become unstably massive and explode as a Type Ia supernova."

###

Graham's postdoctoral fellowship is supported by gifts from Gary and Cynthia Bengier.

Media Contact

Robert Sanders
rlsanders@berkeley.edu
510-643-6998

 @UCBerkeleyNews

http://www.berkeley.edu 

Robert Sanders | EurekAlert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>