Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient and tunable interface for quantum networks

24.05.2012
Quantum computers may someday revolutionize the information world. But in order for quantum computers at distant locations to communicate with one another, they have to be linked together in a network.

While several building blocks for a quantum computer have already been successfully tested in the laboratory, a network requires one additonal component: a reliable interface between computers and information channels. In the current issue of the journal Nature, physicists at the University of Innsbruck report the construction of an efficient and tunable interface for quantum networks.


At the core of the experiment lies an optical resonator consisting of two highly reflective mirrors. Photo: C. Lackner

Quantum technologies promise to redefine the landscape of information processing and communication. We already live in an information age, in which vast amounts of data are sent around the world over optical fibers, but future quantum networks may be many times more powerful. These networks will require interfaces that can transfer information from quantum processors onto light particles (photons).

Such interfaces will allow optical fibers to transmit information-bearing photons between remote data registers, which are likely to be composed of quantum dots or ions. In contrast to classical information, quantum information can’t be copied without being corrupted. Instead, physicists around the world are searching for ways to transfer quantum information between matter and light using entanglement, the quantum property in which the state of one particle depends on the state of a second. Now, a research team led by Rainer Blatt, Tracy Northup, and Andreas Stute at the University of Innsbruck’s Institute for Experimental Physics has demonstrated the first interface between a single ion and a single photon that is both efficient and freely tunable.

High efficiency and precision
The Innsbruck physicists trap a single calcium ion in a so-called Paul trap and place it between two highly reflective mirrors. They excite the ion with a laser, thereby generating a photon which is entangled with the ion and which is reflected back and forth between the mirrors. Custom tuning of the entanglement between ion and photon is possible by adjusting the frequency and amplitude of the laser. This technique has two significant advantages over previous approaches that have entangled atoms with light: “The efficiency with which we produce entangled photons is quite high and in principle could be increased to over 99 percent,” explains Northup. “But above all, what this setup lets us do is generate any possible entangled state.” To this end, the frequency and amplitude of the laser light are carefully chosen so that target collective state of the ion and photon is reached. At the core of the experiment lies an optical resonator consisting of two highly reflective mirrors. Photons bounce back and forth up to 25,000 times between these mirrors, interacting with the ion, before escaping through one mirror into an optical fiber. “Along with an efficient entanglement process, we’ve demonstrated an entangled quantum state between an atom and a photon with the highest precision measured to date,” explains Andreas Stute.
Technology for the future
The experiment offers important insights into the interaction of light and matter and may prove useful in constructing quantum computers or a future quantum internet. “Whenever we have to transfer quantum information from processing sites to communication channels, and vice versa, we’re going to need an interface between light and matter,” explains Northup. The researchers are supported by the Austrian Science Fund and the European Union. Their results appear in the May 24 issue of Nature.
Tunable Ion-Photon Entanglement in an Optical Cavity. A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, R. Blatt. Nature 2012.

http://dx.doi.org/10.1038/nature11120

Contact information:

Tracy Northup
Institute for Experimental Physics
University of Innsbruck
Tel.: +43 512 507 6366
E-Mail: Tracy.Northup@uibk.ac.at
Web: http://www.quantumoptics.at/
Christian Flatz
Public Relations Office
University of Innsbruck
Tel.: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: Christian.Flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.quantumoptics.at/
http://www.uibk.ac.at

More articles from Physics and Astronomy:

nachricht Supporting structures of wind turbines contribute to wind farm blockage effect
13.12.2019 | American Institute of Physics

nachricht Chinese team makes nanoscopy breakthrough
13.12.2019 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>