Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth siblings can be different!

24.02.2012
Chemical clues on the formation of planetary systems

The study of the photospheric stellar abundances of the planet-host stars is the key to understanding how protoplanets form, as well as which protoplanetary clouds evolve planets and which do not.

These studies, which have important implications for models of giant planet formation and evolution, also help us to investigate the internal and atmospheric structure and composition of extrasolar planets..

Theoretical studies suggest that C/O and Mg/Si, are the most important elemental ratios in determining the mineralogy of terrestrial planets, and they can give us information about the composition of these planets. The C/O ratio controls the distribution of Si among carbide and oxide species, while Mg/Si gives information on the silicate mineralogy. In 2010 Bond et al. (2010b) carried out the first numerical simulations of planet formation in which the chemical composition of the proto-planetary cloud was taken as an input parameter. Terrestrial planets were found to form in all the simulations with a wide variety of chemical compositions so these planets might be very different from the Earth.
Delgado Mena et al. (2010) have carried out the first detailed and uniform study of C, O, Mg and Si abundances for 61 stars with detected planets and 270 stars without detected planets from the homogeneous high-quality unbiased HARPS GTO sample. They found mineralogical ratios quite different from those in the Sun, showing that there is a wide variety of planetary systems which are unlike the Solar System. Many planetary-host stars present a Mg/Si value lower than 1, so their planets will have a high Si content to form species such as MgSiO3. This type of composition can have important implications for planetary processes like plate tectonics, atmospheric composition and volcanism.

'There could be billions of Earthlike planets in the Universe but a great majority of them may have a totally different internal and atmospheric structure. Building planets in chemically non-solar environments (which are very common in the Universe) may lead to the formation of strange worlds, very different from the Earth! The amount of radioactive and some refractory elements (especially Si) may have drastic implications for planetary processes such as plate tectonics and volcanic activity,' concludes Garik Israelian.

The latest numerical simulations have shown that a wide range of extrasolar terrestrial planet bulk compositions are likely to exist. Planets simulated as forming around stars with Mg/Si ratios less than 1 are found to be Mg-depleted (compared to the Earth), consisting of silicate species such as pyroxene and various types of feldspars. Planetary carbon abundances also vary in accordance with the host stars' C/O ratio. The predicted abundances are in keeping with observations of polluted white dwarfs (expected to have accreted their inner planets during their previous red giant stage).
'The observed variations in the key C/O and Mg/Si ratios for known planetary host stars implies that a wide variety of extrasolar terrestrial planet compositions are likely to exist, ranging from relatively "Earthlike" planets to those that are dominated by C, such as graphite and carbide phases (e.g. SiC, TiC),' Delgado Mena stresses.

The results of Delgado Mena et al. (2010) were used in this study as they are the first to determine the abundance of all of the required elements in a completely internally consistent manner, using high quality spectra and an identical approach for all stars and elements, for a large sample of both host and non-host stars.

The chemical and dynamical simulations were combined by assuming that each embryo retains the composition of its formation location and contributes the same composition to the simulated terrestrial planet. The innermost terrestrial planets (located within ∼0.5 AU from the host star) contain a significant amount of the refractory elements Al and Ca (∼47% of the planetary mass). Planets forming beyond ∼0.5 AU from the host star contain steadily less Al and Ca with increasing distance. One planetary system, 55 Cnc, has a C/O ratio above 1 (C/O = 1.12). This system produced carbon-enriched "Earthlike" planets. All of the terrestrial planets considered in this work have compositions dominated by O, Fe, Mg and Si, most of these elements being delivered in the form of silicates or metals (in the case of iron). However, important differences between those planets forming in systems with C/O 0.8 (55Cnc) have been found.

'We are working hard to decrease abundance measurement errors and make the results of theoretical models and numerical simulations more reliable,' comments González Hernández, 'There is much work to be done'.

The members of the research team are: Garik Israelian and Jonay González Hernández (IAC), Elisa Delgado Mena and N. Santos (University of Porto, Portugal), and J. Carter-Bond and D. O'Brien (Planetary Science Institute, Tucson, Arizona). These results will be reported in The Astrophysical Journal Letters.

Garik Israelian | EurekAlert!
Further information:
http://www.iac.es

More articles from Physics and Astronomy:

nachricht On Mars, sands shift to a different drum
24.05.2019 | University of Arizona

nachricht New Boost for ToCoTronics
23.05.2019 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>