Dolphin Echolocation Performance May Degrade from Anthropogenic Noise Exposure

Since some of these marine species, such as dolphins, rely on sound to navigate, researchers from the U.S. Navy and the National Marine Mammal Foundation set out to learn more about how anthropogenic noise might affect dolphins’ echolocation ability.

The scientists’ initial results, which they will discuss at the 162nd Acoustical Society of America Meeting in San Diego, Calif., suggest continuous noise and noise at frequencies within a dolphin’s echolocation range has the potential to negatively impact echolocation performance.

At the U.S. Navy Marine Mammal Program facility, the researchers used a hydrophone to detect a dolphin’s clicks. They then fed the signal to a computer to be converted into an “echo” that was delayed and played back to the dolphin. By adjusting the delay, the scientists created echoes to simulate a physical object between 3 and 17 meters away, for both stationary and rotated objects. The dolphin was trained to make a buzzing sound when he detected the echo signal changed from a stationary object to a rotated object. While playing the echoes, the scientists also played different types of manmade noise and tested how each noise type affected the dolphin’s ability to identify when the echo changed. The researchers tested seven different noise types at varying frequencies and durations.

“Preliminary results show that intermittent noise at frequencies outside of the echolocation range of the dolphin had little effect on his echolocation performance, while continuous noise and noise within the dolphin’s echolocation range decreased performance at a farther distance,” says Eryn Wezensky, a researcher on the project. One surprising result, she notes, is that Gaussian noise [broad spectrum noise whose amplitude distribution follows a normal curve] in the mid-frequency range, which is outside the echolocation range of the dolphin, still decreased the dolphin’s ability to detect the echo change at distances from 13 to 16 meters. As a next step, the researchers plan to analyze the dolphin’s click characteristics under different noise conditions, to test whether noise might prompt dolphins to compensate with louder clicks, or slow the animals’ response time.

The presentation 5aAB5, “Performance of an echolocating bottlenose dolphin in the presence of anthropogenic masking noise,” by Eryn M. Wezensky et al. will be at 9:15 a.m. on Friday, Nov. 4.

Media Contact

Charles E. Blue Newswise Science News

More Information:

http://www.aip.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors