Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dilating time with superconductors

26.01.2009
Solitary waves trapped in superconducting junctions could illustrate time dilation effects similar to those in special relativity

Solitary waves, known as solitons, can be striking. The first observation of a soliton was documented in 1834: a large moving heap of water formed by a boat on a canal in Scotland. Since then, solitons have been found in many areas of science including nonlinear optics, condensed matter physics, astrophysics (for example Jupiter's red spots), and biology (during energy transfer in DNA).

Solitons can also be found in a so-called Josephson junction, where a thin insulating layer is sandwiched between two superconductors. A team, including RIKEN scientists at the Advanced Science Institute in Wako, has discovered a new type of soliton excitation in a Josephson junction that could be used to measure time dilation effects similar to those in Einstein’s special relativity (1).

In a Josephson junction, the role of a soliton is played by a ‘Josephson vortex’—a lump of magnetic field that can be accelerated inside the material (2). When a Josephson vortex approaches the speed of light for the material, it should start to experience relativistic effects. One of these effects, the Lorentz (length) contraction of solitons, has been observed in experiments. However the measurement of another relativistic effect, time dilation, has been a challenge.

“It has been difficult to observe time dilation for a moving Josephson vortex because we need something internal acting as a clock to measure time in its frame of reference,” explains team member Franco Nori from RIKEN and the University of Michigan, USA. “We can’t find such a clock in conventional Josephson junctions, but we found one that can exist in vortices in long, wide Josephson junctions.”

The ‘clock’ discovered by Nori and co-workers is a nonlinear wave that propagates along Josephson vortices, and therefore belongs to the vortex frame of reference. The excitations are associated with distortions in the Josephson vortices, and are similar to shear waves in solids. They can have almost any shape and retain it for a long time while the wave is propagating.

“The new excitation that we discovered can act as the ‘minute hand’ of a clock, keeping track of time in the frame of reference of a moving soliton,” says team member Dmitry Gulevich from Loughborough University, UK, and RIKEN.

Feo Kusmartsev and Sergey Savel’ev, also from Loughborough University, add: “This effect could be used to transmit information, and as waveguides for Terahertz radiation.” The research team plans to put the predicted effect into practice in the near future.

Reference

1. Gulevich, D.R., Kusmartsev, F.V., Savel’ev, S., Yampol’skii, V.A. & Nori, F. Shape waves in 2D Josephson junctions: Exact solutions and time dilation. Physical Review Letters 101, 127002 (2008).

2. Gulevich, D.R., Savel’ev, S., Yampol'skii, V.A. Kusmartsev, F.V. and Nori, F. Josephson vortices as flexible waveguides for terahertz waves. Journal of Applied Physics 104, 064507 (2008).

The corresponding author for this highlight is based at the RIKEN Digital Materials Team

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/630/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>