Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DF-PGT, now possible through massive sequencing techniques

06.12.2018

Researchers adapt a database containing almost 5,000 genes responsible for the most common hereditary diseases to the Double Factor Preimplantation Genetic Testing (DF-PGT)

A research team from the Universitat Autònoma de Barcelona (UAB), in collaboration with the Blood and Tissue Bank of Catalonia, has managed to implement a massive sequencing platform for Preimplantation Genetic Testing (PGT) for the first time in history.


The new massive sequencing platform permits scientists to identify alterations in the structure or number of chromosomes of the embryonic cells related to over 4,800 genes. The results of the experiments conducted in the study (CNV-NGS) were later confirmed with other genomic hybridation preimplantational diagnosis techniques (mCGH and aCGH), previously developed by the research team led by UAB's researcher Joaquima Navarro.

Credit: UAB

The research work has adapted the TruSight One (TSO) platform, one of today's most complete genetic panels with over 4,800 genes responsible for the most common monogenetic (hereditary) diseases, to the Double Factor Preimplantation Genetic Testing (DF-PGT).

The study, published in PLoS ONE, was led by Joaquima Navarro and Jordi Benet, researchers from the UAB Department of Cellular Biology, Physiology and Immunology, and included the collaboration of the team led by Francisco Vidal from the Blood and Tissue Bank of Catalonia.

"We successfully managed to implement an innovative, promising and universal strategy, prepared for a simultaneous diagnosis of genetic mutations and chromosomal alterations within embryos obtained by in vitro fertilisation (IVF), of benefit to the DF-PGT candidate families with mutations causing diseases included in the TSO platform. In addition, it only requires a single laboratory experiment and without the need previously to prepare the diagnosis methodology. This substantially speeds up the study process and the availability of the results of the family's single gene disorders. Until now, there was a need to prepare the specific procedures before conducting the diagnosis for each of the mutations", Joaquima Navarro points out.

The new tool will make it possible to diagnose mutations both directly and indirectly, which increases the level of security of the diagnosis. At the same time, it allows for the chromosomal characterisation within embryos, for the totality of all 23 human chromosome pairs, and detects whether the embryo is aneuploid, with an abnormal number of chromosomes and therefore non-transferable, or euploid, with the correct number and therefore viable and with greater chances of implantation.

The team led by Professor Navarro developed the DF-PGT strategy in 2009. A pioneering technique successfully applied on numerous occasions since then, it consists in analysing within one same IVF cycle the specific genetic mutations causing hereditary diseases, as well as a complete embryonic chromosomal endowment (cytogenetics) through a comparative genomic hybridisation technique. This allows identifying and selecting embryos which are free of the diseases and chromosomal defects hindering their evolution. In 2009, 2013 and 2015, this group was the first ever to use another DF-PGT strategy to select healthy embryos and help different families birth healthy offsprings: twins free of the Von Hippel-Lindau syndrome, twins free of the Lynch syndrome, and two other healthy babies from two families at risk from sickle cell disease and cystic fibrosis, respectively *. On those occasions, the scientists first had to prepare the diagnosis methods of the mutations responsible for the specific genetic disease; whereas in the current strategy proposed, no specific preparation is necessary.

Overcoming DNA Limitations in Embryonic Cells

The Next Generation Sequencing (NGS) techniques represent a giant leap forward in the quality of genetic analysis procedures, given that they permit studying millions of DNA sequences massively and simultaneously in one same experiment. These powerful tools are successfully being used for the characterisation of blood and tissue samples, in which the amount of DNA is not a restricting factor.

"The proposed methodology overcomes the limitations existing until now. It was developed to be applied to samples of only 6-8 blastocyst trophoderm cells with the scheduling of a frozen embryo transfer cycle, in the case of the results indicating an absence of family diseases and embryo", explains Joaquima Navarro.

Before implementing the new platform there was a need to determine which of the four most commonly used DNA amplification systems was most suitable for the adequate identification of mutations. Researchers were thus also the first ever to conduct a chromosomal characterisation with the Nexus computational biology programme by using the TSO database.

"The tool is also of interest in PGTs with risk of chromosomal alterations due to advanced maternal age, alterations found in the father's chromosomes,, as well as in cases of repeated miscarriages. Also in cases of the oocytes of young donors, since a certain risk of aneuploidy has also been described", the UAB researcher points out.

Researchers are confident that this new methodology will soon be available for use with the TSO panel or by applying it to new, even more complete panels, such as the ones capable of analysing the whole exome or whole genome sequencing. They are also certain that in the middle term it will be applied simultaneously to many samples, thereby reducing its cost.

###

In addition to researchers from the UAB and the Blood and Tissue Bank of Catalonia, this study included the involvement of specialists from the Vall d'Hebron Research Institute (VHIR), the Puigvert Foundation, the Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), the Centre de Medicina Embrionària (CME), the Centre d'Infertilitat i Reproducció Humana (CIRH) and the August Pi i Sunyer Biomedical Research Institute (IDIBAPS).

"Our work represents a very important milestone in the line of research we conduct on preimplantation genetic testing. A field in which the UAB was at the forefront globally in the 1980s under the guidance of Professor of Cell Biology Josep Egozcue. We would have loved to share these results with him, he certainly would have been very satisfied", Joaquima Navarro declares.

Reference: del Rey J, Vidal F, Ramírez L, Borràs N, Corrales I, Garcia I, et al. (2018) Novel Double Factor PGT strategy analyzing blastocyst stage embryos in a single NGS procedure. PLoS ONE 13(10): e0205692. https://doi.org/10.1371/journal.pone.0205692

* Obradors et al. Outcome of twin babies free of Von Hippel-Lindau disease after a double-factor preimplantation genetic diagnosis: monogenetic mutation analysis and comprehensive aneuploidy screening. Fertil Steril. 91(3):933.e1-7. Epub 2009 https://doi.org/10.1016/j.fertnstert.2008.11.013

Daina et al. First successful double-factor PGD for Lynch syndrome: monogenic analysis and comprehensive aneuploidy screening. Clin Genet 2013: 84: 70 - 73. https://doi.org/10.1111/cge.12025

Daina et al. Double-factor preimplantation genetic diagnosis: monogenic and cytogenetic diagnoses analyzing a single blastomere. Prenat Diagn. 2015 Dec;35(13):1301-7. https://doi: 10.1002/pd.4691. Epub 2015 Oct 15

María Jesús Delgado
MariaJesus.Delgado@uab.cat
34-935-814-049

 @UAB_info

http://www.uab.es 

María Jesús Delgado | EurekAlert!
Further information:
https://www.uab.cat/web/newsroom/news-detail-1345668003610.html?noticiaid=1345778496881
http://dx.doi.org/10.1371/journal.pone.0205692

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>