Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting cryptosporidium in China

15.04.2015

A recently developed lab-on-a-chip device, which can diagnose the opportunistic parasite in as little as 10 minutes, may help improve treatment in remote, at-risk rural areas

For a healthy individual, an infection of Cryptosporidium parvum may mean nothing more than a few days of bad diarrhea. For someone with a compromised immune system, it can mean death, following an excruciating, protracted bout of watery diarrhea.


This is the microfluidic chip, with a diagram of its channels and antigen-labeling process.

Credit: Cheng/Fudan University

Recently, researchers at Fudan University's Institute of Biomedical Sciences in Shanghai developed a lab-on-a-chip device that can rapidly diagnose cryptosporidium infections from just a finger prick -- potentially bringing point-of-care diagnosis to at-risk areas in rural China in order to improve treatment outcomes.

Worldwide, treatment for the parasitic infection consists largely of oral rehydration and managing symptoms until the body clears the infection, something that may take far longer for people with HIV infections.

Currently, China has more than 780,000 people living with HIV/AIDS, but there is very little data on how many of them are living with Cryptosporidium infections.

This stems from the difficulties of diagnosing an infection in the field -- poor sensitivity and a short window of spore secretion both limit the viability of acid-fast staining, a standard diagnostic assay in use today. More advanced immunoassays, such as ELISA, are difficult to use broadly because they require relatively advanced lab settings and skilled technicians.

To address this need, Xunjia Cheng and Guodong Sui, both professors at Fudan University, sought to develop a device better suited for the field. Cheng's research has involved medical protozoa and opportunistic HIV infections, and Sui's lab focuses on microfluidics. This week in the journal Biomicrofluidics, from AIP Publishing, they describe how they developed and tested the new microfluidic device as the fruit of this collaboration.

The microfluidic chip was designed by AutoCad software and manufactured from a widely used silicon-based organic polymer known as PDMS. It consists of functional valves, pumps and columns, collectively sitting at the heart of a platform of reagent cartridges, an injection pump, a fluorescence microscope and a digital camera. The chip itself is small -- 3 cm by 2 cm -- and only costs about a dollar to manufacture, according to Sui.

The microfluidic device tests for the presence of the parasites' P23 antigen, a major molecular target of host antibody responses against the pathogen's infective stages.

The device is easy to use, allowing just about anybody to operate it, Sui and Cheng said. It can process up to five samples at a time, and the entire detection process can be completed in 10 minutes with only two microliters of blood -- less than the volume of a typical mustard seed.

Sui and Cheng tested their device's efficacy at diagnosing Cryptosporidium infections in 190 HIV-infected patients in Guangxi, China.

They found that the device's diagnostic capabilities were on par with those of ELISA - essentially giving you a device that's as effective as the current diagnostic standard, with huge potential reductions in cost, timeframe, size and the amount of training needed to operate.

Future work for Sui and Cheng involves expanding the chip's sample processing capacities to include other infectious diseases, as well as increasing the device's sensitivity and specificity.

###

The article, "Rapid microfluidic immunoassay for surveillance and diagnosis of Cryptosporidium infection in HIV-infected patients," is authored by Li Zhang, Yongfeng Fu, Wenwen Jing, Qing Xu, Wang Zhao, Meng Feng, Hiroshi Tachibana, Guodong Sui and Xunjia Cheng. It will appear in the journal Biomicrofluidics on April 14, 2015 (DOI: 10.1063/1.4916229). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/bmf/9/2/10.1063/1.4916229

The authors of this paper are affiliated with Fudan University and Tokai University School of Medicine.

ABOUT THE JOURNAL

Biomicrofluidics publishes research highlighting fundamental physiochemical mechanisms associated with microfluidic and nanofluidic phenomena as well as novel microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. See http://bmf.aip.org

Media Contact

Jason Socrates Bardi
jbardi@aip.org
240-535-4954

 @jasonbardi

Jason Socrates Bardi | EurekAlert!

More articles from Physics and Astronomy:

nachricht Gravitational waves will settle cosmic conundrum
15.02.2019 | Simons Foundation

nachricht Spintronics by 'straintronics'
15.02.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>