Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Curved kick on the nanoscale: Investigations of the skyrmion Hall effect reveal surprising results

27.12.2016

One step further towards the application of skyrmions in spintronic devices

Researchers at Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) have made another important breakthrough in the field of future magnetic storage devices. Already in March 2016, the international team investigated structures, which could serve as magnetic shift register or racetrack memory devices. This type of storage promises low access times, high information density, and low energy consumption. Now, the research team achieved the billion-fold reproducible motion of special magnetic textures, so-called skyrmions, between different positions, which is exactly the process needed in magnetic shift registers thereby taking a critical step towards the application of skyrmions in devices. The work was published in the research journal Nature Physics.


The magnetic structure of a skyrmion is symmetrical around its core; arrows indicate the direction of spins.

ill./©: Benjamin Krüger, JGU

The experiments were carried out in specially designed thin film structures, i.e., vertically asymmetric multilayer devices exhibiting broken inversion symmetry and thus stabilizing special spin structures called skyrmions. Those structures are similar to a hair whorl and like these are relatively difficult to destroy. This grants them unique stability, which is another argument for the application of skyrmions in such spintronic devices.

Since skyrmions can be shifted by electrical currents and feel a repulsive force from the edges of the magnetic track as well as from single defects in the wire, they can move relatively undisturbed through the track. This is a highly desired property for racetrack devices, which are supposed to consist of static read- and write-heads, while the magnetic bits are shifted in the track. However, it is another important aspect of skyrmion dynamics that the skyrmions do not only move parallel to the applied current, but also perpendicular to it. This leads to an angle between the skyrmion direction of motion and the current flow called the skyrmion Hall angle, which can be predicted theoretically. As a result, the skyrmions should move under this constant angle until they start getting repelled by the edge of the material and then keep a constant distance to it.

Within their latest research project, scientists of JGU and MIT now proved that the billion-fold reproducible displacement of skyrmions is indeed possible and can be achieved with high velocities. Furthermore, the skyrmion Hall angle was investigated in detail. Surprisingly, it turned out to be dependent on the velocity of the skyrmions, which means that the components of the motion parallel and perpendicular to the current flow do not scale equally with the velocity of the skyrmions. This is not predicted in the conventional theoretical description of skyrmions. Part of the solution of this unexpected behavior could be the deformation of the skyrmion spin structure, calling for more theoretical effort to fully understand the properties of skyrmions.

"I am glad that the collaboration between Mainz University and MIT has already yielded the second high-ranked publication. Considering especially the short time since the collaboration started, this is exceptional and I am happy to be able to participate in it," said Kai Litzius, first-author of the Nature Physics article. Litzius is a scholar of the Graduate School of Excellence "Materials Science in Mainz" (MAINZ) and a member of the team headed by Professor Mathias Kläui.

"In highly competitive fields of research such as that on skyrmions, international cooperation with leading groups is a strategical advantage. Within only two years after the start of the collaboration with our colleagues from MIT, we have already published the second time together in a high-ranked Nature group journal. The MAINZ Graduate School of Excellence facilitates research stays of PhD students from the United States in Mainz and vice versa and therefore contributes significantly to international education and successful research in this field,” emphasized Professor Mathias Kläui of the JGU Institute of Physics, who is also Director of MAINZ.

Establishment of the MAINZ Graduate School was granted through the Excellence Initiative by the German Federal and State Governments to Promote Science and Research at German Universities in 2007 and its funding was extended in the second round in 2012. It consists of work groups from Johannes Gutenberg University Mainz, TU Kaiserslautern, and the Max Planck Institute for Polymer Research in Mainz. One of its focal research areas is spintronics, where cooperation with leading international partners plays an important role.

Publication:
Kai Litzius et al.
Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy
Nature Physics, 26 December 2016
DOI: 10.1038/nphys4000


Further information:
Professor Dr. Mathias Kläui
Condensed Matter Theory Group
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23633
e-mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de

Graduate School of Excellence "Materials Science in Mainz" (MAINZ)
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-26984
fax +49 6131 39-26983
e-mail: mainz@uni-mainz.de
http://www.mainz.uni-mainz.de/

Weitere Informationen:

http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys4000.html – Abstract ;
http://www.uni-mainz.de/presse/20165_ENG_HTML.php – press release “International research team achieves controlled movement of skyrmions” (7 March 2016) ;
http://www.uni-mainz.de/presse/18027_ENG_HTML.php – press release “Physicists observe motion of tiny magnetic whirls” (3 March 2015)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>