Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computing the best high-resolution 3-D tissue images

24.04.2012
Real-time, 3-D microscopic tissue imaging could be a revolution for medical fields such as cancer diagnosis, minimally invasive surgery and ophthalmology. University of Illinois researchers have developed a technique to computationally correct for aberrations in optical tomography, bringing the future of medical imaging into focus.

The computational technique could provide faster, less expensive and higher resolution tissue imaging to a broader population of users. The group describes its technique this week in the online early edition of the Proceedings of the National Academy of Sciences.

“Computational techniques allow you to go beyond what the optical system can do alone, to ultimately get the best quality images and three-dimensional datasets,” said Steven Adie, a postdoctoral researcher at the Beckman Institute for Advanced Science and Technology at the U. of I. “This would be very useful for real-time imaging applications such as image-guided surgery.”

Aberrations, such as astigmatism or distortion, plague high-resolution imaging. They make objects that should look like fine points appear to be blobs or streaks. The higher the resolution, the worse the problem becomes. It’s especially tricky in tissue imaging, when precision is vital to a correct diagnosis.

Adaptive optics can correct aberrations in imaging. It’s widely used in astronomy to correct for distortion as starlight filters through the atmosphere. A complex system of mirrors smooth out the scattered light before it enters the lens. Medical scientists have begun applying adaptive optics hardware to microscopes, hoping to improve cell and tissue imaging.

“It’s the same challenge, but instead of imaging through the atmosphere, we’re imaging through tissue, and instead of imaging a star, we’re imaging a cell,” said Stephen Boppart, a professor of electrical and computer engineering, of bioengineering and of internal medicine at the U. of I. “But a lot of the optical problems are the same.”

Unfortunately, hardware-based adaptive optics are complicated, tedious to align and extremely expensive. They can only focus on one focal plane at a time, so for tomography – 3-D models constructed from sectional images as in a CT scan, for example – the mirrors have to be adjusted and a new image scanned for each focal plane. In addition, complex corrective systems are impractical for handheld or portable devices, such as surgical probes or retinal scanners.

Therefore, instead of using hardware to correct a light profile before it enters the lens, the Illinois team uses computer software to find and correct aberrations after the image is taken. Boppart's group teamed up with with Scott Carney, a professor of electrical and computer engineering and the head of the Optical Science Group at the Beckman Institute, to develop the technique, called computational adaptive optics. They demonstrated the technique in gel-based phantoms laced with microparticles as well as in rat lung tissue. They scan a tissue sample with an interferometric microscope, which is an optical imaging device using two beams of light. The computer collects all of the data and then corrects the images at all depths within the volume. Blurry streaks become sharp points, features emerge from noise, and users can change parameters with the click of a mouse.

“Being able to correct aberrations of the entire volume helps us to get a high-resolution image anywhere in that volume,” said Adie. “Now you can see tissue structures that previously were not very clear at all.”

Computed adaptive optics can be applied to any type of interferometric imaging, such as optical coherence tomography, and the computations can be performed on an ordinary desktop computer, making it accessible for many hospitals and clinics.

Next, the researchers are working to refine the algorithms and explore applications. They are combining their computational adaptive optics with graphics processors, looking forward to real-time in-vivo applications for surgery, minimally invasive biopsy and more.

For example, computational adaptive optics could be very useful for ophthalmologists. Boppart’s group previously has developed various handheld optical tomography devices for imaging inside the eye, particularly retinal scanning. Aberrations are very common in the human eye, making it difficult to acquire clear images. But adaptive optics hardware is too expensive or too complicated for most practicing ophthalmologists. With a computational solution, many more ophthalmologists could more effectively examine and treat their patients.

“The effectiveness is striking,” Boppart said. “Because of the aberrations of the human eye, when you look at the retina without adaptive optics you just see variations of light and dark areas that represent the rods and cones. But when you use adaptive optics, you see the rods and cones as distinct objects.”

In addition, the ability to correct data post-acquisition allows the researchers to develop microscope systems that maximize light collection instead of worrying about minimizing aberrations. This could lead to better data for better image rendering.

“We are working to compute the best image possible,” said Boppart, who also is affiliated with the Institute for Genomic Biology at the U. of I.

The National Institutes of Health and the National Science Foundation supported this work.

Liz Ahlberg | EurekAlert!
Further information:
http://www.illinois.edu
http://www.news.illinois.edu/news/12/0423optics_StephenBoppart.html

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
02.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Protective antibodies identified for rare, polio-like disease in children

06.07.2020 | Health and Medicine

How a mutation on the novel coronavirus has come to dominate the globe

06.07.2020 | Life Sciences

Order from noise: how randomness and collective dynamics define a stem cell

06.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>