Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coldest Brown Dwarfs Blur Lines between Stars and Planets

06.09.2013
Astronomers are constantly on the hunt for ever-colder star-like bodies, and two years ago a new class of objects was discovered by researchers using NASA's WISE space telescope. However, until now no one has known exactly how cool their surfaces really are - some evidence suggested they could be room temperature.

A new study shows that while these brown dwarfs, sometimes called failed stars, are indeed the coldest known free-floating celestial bodies, they are warmer than previously thought with temperatures about 250-350 degrees Fahrenheit.


This artist's conception portrays a free-floating brown dwarf, or failed star. A new study shows that several of these objects are warmer than previously thought with temperatures about 250-350 degrees Fahrenheit. Credit: NASA/JPL-Caltech

To reach such low surface temperatures after cooling for billions of years means that these objects can only have about 5 to 20 times the mass of Jupiter. Unlike the Sun, these objects' only source of energy is from their gravitational contraction, which depends directly on their mass.

"If one of these objects was found orbiting a star, there is a good chance that it would be called a planet," says Trent Dupuy, a Hubble Fellow at the Harvard-Smithsonian Center for Astrophysics. But because they probably formed on their own and not in a proto-planetary disk, astronomers still call these objects brown dwarfs even if they are "planetary mass."

Characterizing these cold brown dwarfs is challenging because they emit most of their light at infrared wavelengths, and they are very faint due to their small size and low temperature.

To get accurate temperatures, astronomers need to know the distances to these objects. "We wanted to find out if they were colder, fainter, and nearby or if they were warmer, brighter, and more distant," explains Dupuy. Using NASA's Spitzer Space Telescope, the team determined that the brown dwarfs in question are located at distances 20 to 50 light-years away.

To determine the distances to these objects the team measured their parallax - the apparent change in position against background stars over time. As the Spitzer Space Telescope orbits the Sun its perspective changes and nearby objects appear to shift back and forth slightly. The same effect occurs if you hold up a finger in front of your face and close one eye and then the other. The position of your finger seems to shift when viewed against the distant background.

But even for these relatively nearby brown dwarfs, the parallax motion is small. "To be able to determine accurate distances, our measurements had to be the same precision as knowing the position of a firefly to within 1 inch from 200 miles away," explains Adam Kraus, professor at the University of Texas at Austin and the other author of the study.

The new data also present new puzzles to astronomers that study cool, planet-like atmospheres. Unlike warmer brown dwarfs and stars, the observable properties of these objects don't seem to correlate as strongly with temperature. This suggests increased roles for other factors, such as convective mixing, in driving the chemistry at the surface. They also find evidence for disappearing alkali elements that are likely getting incorporated into noxious clouds.

This study examined the initial sample of the coldest brown dwarfs discovered in the WISE survey data. Additional objects discovered in the past two years remain to be studied and will hopefully shed light on some of these outstanding issues.

A paper describing these results, authored by Dupuy and Kraus, appears in the Sept. 5, 2013 issue of Science Express online.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht Data storage using individual molecules
17.12.2018 | Universität Basel

nachricht Formed to Meet Customers’ Needs – New Laser Beams for Glass Processing
17.12.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Formed to Meet Customers’ Needs – New Laser Beams for Glass Processing

17.12.2018 | Physics and Astronomy

Preserving soil quality in the long term

17.12.2018 | Architecture and Construction

New RNA sequencing strategy provides insight into microbiomes

17.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>