Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini Helps Redraw Shape of Solar System

20.10.2009
In a paper published Oct. 15 in Science, researchers from the Johns Hopkins Applied Physics Laboratory (APL) present a new view of the region of the sun’s influence, or heliosphere, and the forces that shape it.

Images from one of the Magnetospheric Imaging Instrument’s sensors, the Ion and Neutral Camera (MIMI/INCA), on NASA’s Cassini spacecraft suggest that the heliosphere may not have the comet-like shape predicted by existing models.

“These images have revolutionized what we thought we knew for the past fifty years; the sun travels through the galaxy not like a comet but more like a big, round bubble” said Stamatios Krimigis, principal investigator for MIMI, which is orbiting Saturn. “It’s amazing how a single new observation can change an entire concept that most scientists had taken as true for nearly fifty years.”

As the solar wind flows from the sun, it carves out a bubble in the interstellar medium. Models of the boundary region between the heliosphere and interstellar medium have been based on the assumption that the relative flow of the interstellar medium and its collision with the solar wind dominate the interaction. This would create a foreshortened “nose” in the direction of the solar system’s motion, and an elongated “tail” in the opposite direction.

The INCA images suggest that the solar wind’s interaction with the interstellar medium is instead more significantly controlled by particle pressure and magnetic field energy density.

“The map we’ve created from INCA’s images suggests that pressure from a hot population of charged particles and interaction with the interstellar medium’s magnetic field strongly influence the shape of the heliosphere,” says Don Mitchell, MIMI/INCA co-investigator at APL.

Since entering into orbit around Saturn in July of 2004, INCA has been mapping energetic neutral atoms near the planet, as well as their dispersal across the entire sky. The energetic neutral atoms are produced by energetic protons, which are responsible for the outward pressure of the heliosphere beyond the interface where the solar wind collides with the interstellar medium, and which interact with the magnetic field of the interstellar medium.

“Energetic neutral atom imaging has demonstrated its power to reveal the distribution of energetic ions, first in Earth’s own magnetosphere, next in the giant magnetosphere of Saturn and now throughout vast structures in space—out to the very edge of our sun’s interaction with the interstellar medium,” says Edmond C. Roelof, MIMI/INCA co-investigator at APL.

Researchers from University of Arizona, Tucson, Southwest Research Institute, and University of Texas at San Antonio contributed to the article. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter was designed, developed and assembled at JPL. The Magnetospheric Imaging Instrument was developed by APL.

More information on the Cassini mission is available at: http://www.nasa.gov/cassini, http://saturn.jpl.nasa.gov and on the Magnetospheric Imaging Instrument Web site at http://sd-www.jhuapl.edu/CASSINI.

Jennifer Huergo | EurekAlert!
Further information:
http://www.jhuapl.edu/newscenter/pressreleases/2009/091015.asp
http://www.nasa.gov/cassini
http://saturn.jpl.nasa.gov

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>