Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can ultrashort electron flashes help harvest nuclear energy?

13.07.2018

The lab of Fabrizio Carbone at EPFL and their international colleagues have used ultrafast Transmission Electron Microscopy to take attosecond energy-momentum resolved snapshots (1 attosecond = 10-18 or quintillionths of a second) of a free-electron wave function. Though unprecedented in itself, the scientists also used their experimental success to develop a theory of how to create electron flashes within zeptosecond (10-21 of a second) timeframes, using already existing technology. This breakthrough could allow physicists to increase the energy yield of nuclear reactions using coherent control methods, which relies on the manipulation of quantum interference effects with lasers and which has already helped advance fields like spectroscopy, quantum information processing, and laser cooling.

In fact, one of the most elusive phenomena in physics is the excitation of an atom's nucleus by absorption of an electron. The process, known as "nuclear excitation by electron capture" (NEEC), was theoretically predicted fourty years ago, though it proved difficult to observe experimentally.


A video illustrating the experiments and findings of this study.

Credit: Fabrizio Carbone/EPFL

But in February 2018, US physicists were finally able to catch a glimpse of NEEC in the lab. The work was hailed as ushering in new nuclear energy-harvesting systems, as well as explaining why certain elements like gold and platinum are so abundant in the universe.

The EPFL researchers in their publication suggest a way of potentially exploiting the several orders of magnitude in energy harvesting possibly present in the nucleus of an atom via the coherent control of the NEEC effect. Such method would be enabled by the availability of ultrashort (as to zs) electron flashes.

"Ideally, one would like to induce instabilities in an otherwise stable or metastable nucleus to prompt energy-producing decays, or to generate radiation," says Carbone. "However, accessing nuclei is difficult and energetically costly because of the protective shell of electrons surrounding it."

The authors state: "Our coherent control scheme with ultrashort electron pulses would offer a new perspective for the manipulation of nuclear reactions with potential implications in various fields, from fundamental physics to energy-related applications."

###

Other contributors

Technion - Israel Institute of Technology
University of Glasgow
Ripon College (US)
The Barcelona Institute of Science and Technology
Catalan Institution for Research and Advanced Studies (ICREA)

Reference

G. M. Vanacore, I. Madan, G. Berruto, K. Wang, E. Pomarico, R. J. Lamb, D. McGrouther, I. Kaminer, B. Barwick, F. Javier García de Abajo, F. Carbone. Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nature Communications 12 July 2018. DOI: 10.1038/s41467-018-05021-x

Media Contact

Nik Papageorgiou
n.papageorgiou@epfl.ch
41-216-932-105

 @EPFL_en

http://www.epfl.ch/index.en.html 

Nik Papageorgiou | EurekAlert!

More articles from Physics and Astronomy:

nachricht (Re)solving the jet/cocoon riddle of a gravitational wave event
22.02.2019 | Max-Planck-Institut für Radioastronomie

nachricht Exotic spiraling electrons discovered by physicists
19.02.2019 | Rutgers University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

How the intestinal fungus Candida albicans shapes our immune system

22.02.2019 | Life Sciences

Correct antibiotic dosing could preserve lung microbial diversity in cystic fibrosis

22.02.2019 | Health and Medicine

The evolution of grain yield – Decoding the genetic basis of floret fertility in wheat

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>