Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can the causal order between events change in quantum mechanics?

29.03.2018

Researchers at the University of Vienna and the Austrian Academy of Sciences develop a new theoretical framework to describe how causal structures in quantum mechanics transform. They analyse under which conditions quantum mechanics allows the causal structure of the world to become "fuzzy". In this case, a fixed order of events is not possible. The results are published in the renowned journal Physical Review X.

The idea that events occur one after the other in a fixed causal order is part of our intuitive picture of the physical world. Imagine that Alice can send a message to Bob via a wire that connects them. Alice decides to have a barbecue and can invite Bob via the wire connection.


Dynamics of causal order: Party D is able to control dynamically the causal order of future events for parties A, B and C. Party D can transform the causal order between 1) Event in A happening before event in B, followed by an event in C -on the left of the picture. 2) An indefinite causal order, in which neither A is before B nor B is before A, with C being always at the end-center of the picture. 3) Event in B happening before event in A, followed by an event in C -on the right of the picture.

Copyright: Juan Carlos Palomino, Fakultät für Physik, Universität Wien

If he gets invited, Bob decides to prepare some ?evapči?i to bring along. This is an example where the event in which Alice decides to invite Bob to the barbecue influences the event in which Bob decides to prepare food. Such an order of events characterizes a definite causal structure.

However, research in the foundations of quantum mechanics suggests that, at the quantum level, causal structures may be "indefinite". In an indefinite causal structure there might not be a fixed order in which events happen, i.e. whether Alice influences Bob or Bob influences Alice might not be defined.

If causality is indeed indefinite, where do indefinite causal structures come from? Can they be obtained dynamically so that definite causal structures become indefinite? And, if so, under which conditions can this happen? Answers to these questions would be remarkable, because they would shed light on the nature of causality in the quantum world.

In a recent paper, published in the journal Physical Review X, a group of physicists led by ?aslav Brukner at the University of Vienna and the Vienna Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences showed that, if the dynamics of causal structures is continuous and reversible, a definite causal structure can never become indefinite. In our example, a bending or stretching of the wire (continuous and reversible transformation) connecting Alice and Bob would not lead to any changes in the causal structure because Alice can still reach Bob.

If one wants to change the causal structure, one would have to either disconnect and reconnect the wire (not continuous) or to replace the wire (not reversible). The researchers also studied more complex situations in which more parties are involved. For example, decisions by a third person, Charly, can under certain circumstances determine whether the causal order of future events is definite or indefinite.

"Our results demonstrate that under physically reasonable assumptions of continuity and reversibility a world with definite causal order will never become a world with an indefinite causal order and vice versa", says Esteban Castro, one of the authors of the paper. This insight may lead to a more complete understanding of what the role of causality is in the quantum world.

###

Publication in Physical Review X

"Dynamics of quantum causal structures", E. Castro-Ruiz, F. Giacomini, ?. Brukner
Phys. Rev. X 8, 011047 (2018)
DOI: 10.1103/PhysRevX.8.011047

Media Contact

Caslav Brukner
caslav.brukner@univie.ac.at
43-142-777-2582

 @univienna

http://www.univie.ac.at/en/ 

Caslav Brukner | EurekAlert!

Further reports about: QUANTUM quantum level quantum mechanics quantum world

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>