# Forum for Science, Industry and Business

Search our Site:

## Backpack Physics: Smaller Hikers Carry Heavier Loads

22.10.2014

New model described in the journal The Physics Teacher provides a more accurate estimate of the pack weight a given hiker will be able to carry

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the excuse to hand off heavier gear to the larger members of the group, it turns out that they may not need the help.

M.O'Shea/KSU

A group of backpackers hike on an Outward Bound course in the La Sal Mountains, UT.

While leading students on extended backpacking trips for Outward Bound, Kansas State University physics professor Michael O’Shea noticed that some of the smaller students could comfortably carry a greater pack weight than the larger ones of similar fitness levels.

The explanation, he reasoned, might have something to do with the fact that hikers must haul not only their packs, but also their own body weight. He incorporated both of these variables into a model described this week in the journal The Physics Teacher, published by the American Association of Physics Teachers (AAPT). The model provides a more accurate estimation of the pack weight a given hiker will be able to carry and an example of how real-world modeling examples can be used in the classroom.

»AAPT »Teacher »backpackers »complex systems »physics »size »weight

“Online advice from several sources was somewhat misleading in suggesting that pack weight should be a certain percent of a person’s weight,” said O’Shea. However, as the size of any animal increases, strength increases more slowly than body weight—the reason why tiny ants can carry a disproportionately heavy load compared to their weight.

He combined this information with body scaling proportions obtained from other research to create a model matching his observations. The resulting equation takes into account the hiker’s entire load—backpack plus body weight—and can be used to determine the maximum backpack weight for an individual of a given size.

“Overall strength of an individual does not determine how heavy a backpack a person can comfortably carry,” said O’Shea.

The model does make a few assumptions—namely, that the hikers being compared have similar body-fat percentages, and thus that increase in size does correspond to a proportional increase in strength. Nevertheless, it provides a more nuanced estimation of hikers’ carrying capacity than does a simple proportion of body weight.

O’Shea’s model could help inform hikers’ packing decisions, but it also fits into the classroom: “Students should be able to see how some aspects of complex systems, in this case the frame of a human being, can be modeled in a relatively simple way to extract useful information,” he said.

The article, "Backpack Weight and the Scaling of the Human Frame," by Michael O'Shea, appears in the journal The Physics Teacher on Tuesday, October 21, 2014. After that date, it can be accessed at: http://dx.doi.org/10.1119/1.4897584

Dedicated to the strengthening of the teaching of introductory physics at all levels, The Physics Teacher provides peer-reviewed materials to be used in the classrooms and instructional laboratories. See: http://scitation.aip.org/content/aapt/journal/tpt

Jason Socrates Bardi | newswise

Further reports about: AAPT Teacher backpackers complex systems physics size weight

### More articles from Physics and Astronomy:

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

### Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

### Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

### Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

### Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

### Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige