Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A landmark plan for realizing fusion energy and advancing plasma science


Creating and controlling on Earth the fusion energy that powers the sun and stars is a key goal of scientists around the world. Production of this safe, clean and limitless energy could generate electricity for all humanity, and the possibility is growing closer to reality. Now a landmark report released this week by the American Physical Society Division of Plasma Physics Community Planning Process proposes immediate steps for the United States to take to accelerate U.S. development of this long-sought power. The report also details opportunities for advancing our understanding of plasma physics and for applying that understanding to benefit society.

The report, the Community Plan for Fusion Energy and Discovery Plasma Sciences, "reflects the enthusiasm among the U.S. fusion and plasma physics community to take bold steps to make fusion energy a reality, to expand our understanding of plasma physics, and to use that understanding to benefit society," said physicist Nathan Ferraro of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), a co-chair of the plan assembled over a year by the community.

PPPL physicist Nathan Ferraro with image from cover of report behind him.

Credit: Photo and composite by Elle Starkman/PPPL Office of Communications.

Professional societies

The 199-page document, put together with input from hundreds of U.S. scientists and engineers from many professional societies, makes numerous recommendations, including the following proposed steps:

  • In the words of the report, research going forward "should be driven by the mission to enable construction of a fusion pilot plant (FPP) that produces net electricity and thereby establishes the scientific and technological basis for commercial fusion energy."
  • Development of this mission should include immediate design of a new U.S. tokamak, or doughnut-shaped fusion facility, capable of handling conditions consistent with those that an FPP will encounter. Also immediately begun should be design and construction of a specialized device to demonstrate the effect that neutrons released by fusion reactions will have on the facility that houses the reactions.
  • Advancing theory and modeling capabilities needed to understand and sustain burning plasmas, in which the plasma is chiefly heated by fusion reactions. The U.S. should also sustain full membership in ITER, the international experiment under construction in France to demonstrate the production of burning plasma.
  • Scaling up research in plasma science fields ranging from astrophysics to nanotechnology. Proposed steps include construction of a general plasma science facility to study astrophysically-relevant magnetized plasma phenomena, ensuring stable funding for a balanced research portfolio, and developing networks of scientists and facilities to enable a broad range of frontier scientific research.

Designed to help fulfill a charge

The report is designed to help the Fusion Energy Sciences Advisory Committee (FESAC) fulfill a DOE charge for the development of a long-range strategy for the Fusion Energy Sciences program of the DOE Office of Science. The document calls for partnerships with other offices and governmental agencies, as well as with private industry and international partners, to enact the full recommendations of the strategic plan. "We are encouraged to see that this process brought the community together to recognize the full scope of this challenge," said Ferraro, "and that coordinated, multi-disciplinary research and development is needed to achieve our goals."


PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit (link is external).

Media Contact

John Greenwald


John Greenwald | EurekAlert!
Further information:

Further reports about: Fusion Plasma fusion energy fusion reactions plasma physics

More articles from Physics and Astronomy:

nachricht An advance in molecular moviemaking shows how molecules respond to two photons of light
20.03.2020 | DOE/SLAC National Accelerator Laboratory

nachricht Unraveling the optical parameters: New method to optimize plasmon enhanced spectroscopy
19.03.2020 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

Im Focus: Shaking off the correlated-electron traffic jam

An international team of researchers from Switzerland, Germany, the USA and Great Britain has uncovered an anomalous metallic behavior in an otherwise insulating ceramic material. The team used ultrashort light pulses with a wide range of colors to watch what happens when the insulating quasi two-dimensional material La2CuO4 (LCO) becomes a three-dimensional metal through laser irradiation. Surprisingly, the researchers found that specific vibrations of the crystal lattice are involved in this metallization process. A careful computational investigation revealed that the same vibrations that show up in this ultrafast movie can destabilize the insulating behavior all by themselves.

The condensed-matter physics world was shaken up when high-temperature superconductivity was reported in a copper oxide material in 1986 by Alex Müller and...

Im Focus: Permanent magnets stronger than those on refrigerator could be a solution for delivering fusion energy

Permanent magnets akin to those used on refrigerators could speed the development of fusion energy - the same energy produced by the sun and stars.

In principle, such magnets can greatly simplify the design and production of twisty fusion facilities called stellarators, according to scientists at the U.S....

All Focus news of the innovation-report >>>



Industry & Economy
Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

70th Lindau Meeting: 660 young scientists from around 100 countries experience first “Lindau Moment" today

02.03.2020 | Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

Latest News

On the trail of organic solar cells’ efficiency

20.03.2020 | Power and Electrical Engineering

Graphene underpins a new platform to selectively ID deadly strains of bacteria

20.03.2020 | Life Sciences

New UCI-led study reveals how skin cells prepare to heal wounds

20.03.2020 | Health and Medicine

Science & Research
Overview of more VideoLinks >>>