Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A dark matter disk in our Galaxy

16.09.2008
An international team of scientists predict that our Galaxy, the Milky Way, contains a disk of ‘dark matter’.

In a paper published in Monthly Notices of the Royal Astronomical Society, astronomers Dr Justin Read, Professor George Lake and Oscar Agertz of the University of Zurich, and Dr Victor Debattista of the University of Central Lancashire use the results of a supercomputer simulation to deduce the presence of this disk. They explain how it could allow physicists to directly detect and identify the nature of dark matter for the first time.

Unlike the familiar ‘normal’ matter that makes up stars, gas and dust, ‘dark’ matter is invisible but its presence can be inferred through its gravitational influence on its surroundings. Physicists believe that it makes up 22% of the mass of the Universe (compared with the 4% of normal matter and 74% comprising the mysterious ‘dark energy’). But, despite its pervasive influence, no-one is sure what dark matter consists of.

Prior to this work, it was thought that dark matter forms in roughly spherical lumps called ‘halos’, one of which envelopes the Milky Way. But this ‘standard’ theory is based on supercomputer simulations that model the gravitational influence of the dark matter alone. The new work includes the gravitational influence of the stars and gas that also make up our Galaxy.

Stars and gas are thought to have settled into disks very early on in the life of the Universe and this affected how smaller dark matter halos formed. The team’s results suggest that most lumps of dark matter in our locality merged to form a halo around the Milky Way. But the largest lumps were preferentially dragged towards the galactic disk and were then torn apart, creating a disk of dark matter within the Galaxy.

“The dark disk only has about half of the density of the dark matter halo, which is why no one has spotted it before,” said lead author Justin Read. “However, despite its low density, if the disk exists it has dramatic implications for the detection of dark matter here on Earth.”

The Earth and Sun move at some 220 kilometres per second along a nearly circular orbit about the centre of our Galaxy. Since the dark matter halo does not rotate, from an Earth-based perspective it feels as if we have a ‘wind’ of dark matter flowing towards us at great speed. By contrast, the ‘wind’ from the dark disk is much slower than from the halo because the disk co-rotates with the Earth.

“It's like sitting in your car on the highway moving at a hundred kilometres an hour”, said team member Dr Victor Debattista. “It feels like all of the other cars are stationary because they are moving at the same speed.”

This abundance of low-speed dark matter particles could be a real boon for researchers because they are more likely to excite a response in dark matter detectors than fast-moving particles. “Current detectors cannot distinguish these slow moving particles from other background ‘noise’,” said Prof. Laura Baudis, a collaborator at the University of Zurich and one of the lead investigators for the XENON direct detection experiment, which is located at the Gran Sasso Underground Laboratory in Italy. “But the XENON100 detector that we are turning on right now is much more sensitive. For many popular dark matter particle candidates, it will be able to see something if it’s there.”

This new research raises the exciting prospect that the dark disk – and dark matter – could be directly detected in the very near future.

FURTHER INFORMATION

Monthly Notices of the Royal Astronomical Society paper
http://dx.doi.org/10.1111/j.1365-2966.2008.13643.x
CONTACT
Dr Justin Read
Institute for Theoretical Physics
University of Zurich
Winterthurerstrasse 190, CH-8057 Zurich
Switzerland
Tel: +41 (0) 44 63 56196, Mob: +41 (0) 76 200 5394
E-mail: justin@physik.unizh.ch
Web: http://www.justinread.net

Robert Massey | alfa
Further information:
http://www.ras.org.uk
http://www.theorie.physik.uzh.ch/~justin/DarkDisk/

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>