Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

127-year-old physics problem solved

22.08.2019

Researcher proves that boat wakes can be skewed

"Seeing the pictures appear on the computer screen was the best day at work I've ever had," says Simen Ådnøy Ellingsen, an associate professor at the Norwegian University of Science and Technology's (NTNU) Department of Energy and Process Engineering.


The boat is moving at the same speed in all of these photos, 50 cm/s. According to Kelvin's theory, all three of these wakes should look the same, but they don't. Try to count the transverse waves behind the boat (the little white spot at the top of each image). Left: Skewed waves. Here, the surface is not moving, but there's a current under the surface. Centre: Same speed, also with the surface at rest, but for this case there's an underwater current against the direction of motion. Right: For this case, the boat and the underwater current are moving in the same direction, still with no surface motion. (This is shortly after the boat started moving, so you can see that the waves are closer together at the back).

Credit: NTNU

That was the day that PhD candidate Benjamin Keeler Smeltzer and master's student Eirik Æsøy had shown in the lab that Ellingsen was right and sent him the photos from the experiment.

Five years ago, Ellingsen had challenged accepted knowledge from 1887, armed with a pen and paper, and won.

He solved a problem regarding the so-called Kelvin angle in boat wakes, which has been unchallenged for 127 years.

The boat wake is the v-shaped pattern that a boat or canoe makes when moving through the water. You've undoubtedly seen one at some point.

It has long been assumed that the angle of the v-shaped wake behind a boat should always be just below 39 degrees, as long as the water isn't too shallow. Regardless whether it's behind a supertanker or a duck, this should always be true. Or not.

For like so many accepted facts, this turns out to be wrong, or at least not always the case. Ellingsen was able to prove this.

"For me, it was a totally new field, and nobody told me it was hard," Ellingsen explained when he first made his discovery.

Boat wakes can actually have a completely different angle under certain circumstances, and can even be off-centred with respect to the direction of the boat. This can happen when there are different currents in different layers of water, known as shear flow.

For shear flow, Kelvin's theory on boat wakes isn't applicable.

"It took the genius of people like Cauchy, Poisson and Kelvin to solve these wave problems for the first time, even for the simplest case of still water without currents. It's far easier for us to figure out the more general cases later, like we've done here, " Ellingsen explains.

Ring waves also act funny under certain circumstances. If you throw a pebble in a lake on a peaceful summer's day, the wave pattern will be perfect, concentric circles. But not if there's shear flow. Then, the rings might turn into ovals.

Ellingsen also predicted this, expanding Cauchy and Poisson's theory from 1815.

"After I did the first calculations, I was on a beach in the Netherlands watching the water flow back out after a wave. I made some rings in the water and took some photos. Looking at them later, the rings looked oblong to me, and I got pretty excited. That wasn't science, of course, but now it is!" says Ellingsen.

That was how Ellingsen ended up on the cover of the prestigious publication Journal of Fluid Mechanics. But all of his calculations had been done on paper, and had yet to be observed empirically.

Now, however, there's lab research to back up his work, thanks to the PhD candidate and master's student who were able to conduct experiments in a specially developed research tank, with Ellingsen as their supervisor.

Eirik Æsøy has a background as a technician, which saved time and money in building the lab. It took about six months to get everything up and running.

"Æsøy and I set up all the equipment to create the currents we needed," Smeltzer explains.Their results have also been published in the Journal of Fluid Mechanics."It's pretty remarkable that the experiments from our little wave basin are being published there," says Smeltzer.

The results from their research on the Kelvin angle might have real practical consequences, such as potentially helping reduce fuel consumption in ships. A large portion of fuel on ships actually goes into making waves.

"Fuel consumption can double if the vessel is travelling downstream compared to upstream," Ellingsen said.

These calculations are made based on currents at the mouth of the Columbia River in Oregon in the USA. Here the currents are strong and the boats many.

So research on boats and ships in different currents is important for anyone interested in reducing fuel consumption and consequently, emissions.

Ellingsen insists their results do not disprove Kelvin's theory, only extend it. Kelvin's angle still holds true as long as there are no current layers under the surface when the water is deep.

But as soon as there's movement between layers of water, so that different layers move at different speeds, the angle changes. Sometimes by a lot.

In theory, with extremely strong currents moving perpendicular to the direction of the boat, the wake can actually end up in front of the boat on one side.

"Then you should probably go sailing somewhere else," says Ellingsen.

###

Reference: Observation of surface wave patterns modified by sub-surface shear currents. Journal of Fluid Mechanics. Benjamin K. Smeltzer, Eirik Æsøy og Simen Å. Ellingsen. DOI: https://doi.org/10.1017/jfm.2019.424

Media Contact

Simen Ellingsen
simen.a.ellingsen@ntnu.no
47-735-93554

 @NTNU

http://www.ntnu.edu 

Simen Ellingsen | EurekAlert!
Further information:
https://norwegianscitechnews.com/2019/08/breaking-the-wakes/
http://dx.doi.org/10.1017/jfm.2019.424

More articles from Physics and Astronomy:

nachricht UMD-led study captures six galaxies undergoing sudden, dramatic transitions
19.09.2019 | University of Maryland

nachricht Stevens team closes in on 'holy grail' of room temperature quantum computing chips
19.09.2019 | Stevens Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

UMD-led study captures six galaxies undergoing sudden, dramatic transitions

19.09.2019 | Physics and Astronomy

Study points to new drug target in fight against cancer

19.09.2019 | Health and Medicine

New tool improves beekeepers' overwintering odds and bottom line

19.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>