Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH researchers find synchronization of memory cells critical for learning and forming memories

07.02.2020

The phrase "Pavlov's dogs" has long evoked images of bells, food and salivating dogs. Even though this tried-and-true model of repetitive patterns mimics a variety of learning processes, what happens on a cellular level in the brain isn't clear. Researchers at the University of New Hampshire took a closer look at the hippocampus, the part of the brain critical for long-term memory formation, and found that the neurons involved in so-called Pavlovian learning shift their behavior during the process and become more synchronized when a memory is being formed - a finding that helps better understand memory mechanisms and provides clues for the development of future therapies for memory-related diseases like dementia, autism and post-traumatic stress disorder (PTSD).

"There are tens of millions of neurons in the hippocampus but only a small fraction of them are involved in this learning process" said Xuanmao (Mao) Chen, assistant professor of neurobiology.


On the left is an enlarged image showing many hippocampal neurons, most of which are silent and only a few are active. On the right are close ups of three highly active neurons, or memory cells, which become synchronized after memory formation (images modified from Zhou et al., 2020 FASEB Journal).

Credit: UNH

"Before engaging in Pavlovian conditioning, these neurons are highly active, almost chaotic, without much coordination with each other, but during memory formation they change their pattern from random to synchronized, likely forging new connecting circuits in the brain to bridge two unrelated events.

In the study, recently published in The FASEB Journal, researchers looked at Pavlovian learning patterns, or respondent conditioning, in mice. In the beginning, before any repetitive learning exercises, the mice did not know what to expect and using special imaging with an endomicroscope the researchers saw that the neural activity was disorderly.

... more about:
»FASEB »PTSD »UNH »disorders »synchronization

But after repeating different tasks associated with a conditional stimulus, like a tone or bell, the mice began to recognize the pattern and the highly active neurons became more synchronized. The researchers hypothesize that without forming synchronization, animals cannot form or retrieve this type of memory.

In the 1890's, Russian psychologist, Ivan Pavlov discovered classical conditioning through repetitive patterns of bell ringing which signaled to his dogs that food was on its way and stimulated salivation.

This same learned behavior is important for episodic knowledge which is the basis for such things as learning vocabulary, textbook knowledge, and memorizing account passwords.

Abnormal learning processing and memory formation are associated with a number of diseases like dementia, autism, and PTSD. People who struggle with these cognitive dysfunction-related disorders may have trouble retaining memories or can even form too strong a memory, as with PTSD patients.

The UNH researchers believe that understanding the fundamentals of how classical conditioning shape neural connections in the brain could speed up the development of treatments for these disorders in the future.

###

Contributing to these findings are Yuxin Zhou, doctoral candidate; Liyan Qiu, research scientist; both at UNH, and Haiying Wang, assistant professor at the University of Connecticut.

This work was supported by the National Institutes of Health (NIH) and the Cole Neuroscience and Behavioral Faculty Research Awards.

The University of New Hampshire inspires innovation and transforms lives in our state, nation and world. More than 16,000 students from all 50 states and 71 countries engage with an award-winning faculty in top-ranked programs in business, engineering, law, health and human services, liberal arts and the sciences across more than 200 programs of study. As one of the nation's highest-performing research universities, UNH partners with NASA, NOAA, NSF and NIH, and receives more than $110 million in competitive external funding every year to further explore and define the frontiers of land, sea and space.

Image: http://unh.edu/sites/default/files/neural_synchronization.png
Caption: A before and after view of four memory cells in the hippocampus. On the left, they are randomly active before learning, and on the right, they show synchronized activity after learning, when a memory is formed (images modified from Zhou et al., 2020 FASEB Journal).
Credit: UNH

Image: http://unh.edu/sites/default/files/neurons.png
Caption: On the left is an enlarged image showing many hippocampal neurons, most of which are silent and only a few are active. On the right are close ups of three highly active neurons, or memory cells, which become synchronized after memory formation (images modified from Zhou et al., 2020 FASEB Journal).
Credit: UNH

Media Contact

Robbin Ray
robbin.ray@unh.edu
603-862-4864

 @unhresearchnews

http://www.unh.edu/news 

Robbin Ray | EurekAlert!
Further information:
https://www.unh.edu/unhtoday/news/release/2020/02/06/unh-researchers-find-synchronization-memory-cells-critical-learning-and

Further reports about: FASEB PTSD UNH disorders synchronization

More articles from Health and Medicine:

nachricht Grooves hold promise for sophisticated healing
05.02.2020 | Rice University

nachricht 'Levitating' proteins could help diagnose opioid abuse, other diseases
05.02.2020 | Michigan State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

Im Focus: New insights could lead to superconductivity in ambient conditions

A team of researchers from Switzerland, the US and Poland have found evidence of a uniquely high density of hydrogen atoms in a metal hydride. The smaller spacings between the atoms might enable packing significantly more hydrogen into the material to a point where it could begin to superconduct at room temperature and ambient pressure.

The scientists conducted neutron scattering experiments at the Oak Ridge National Laboratory (ORNL) in the US on samples of zirconium vanadium hydride at...

Im Focus: Viscosity measurements offer new insights into the earth's mantle

An international research group with Dr. Longjian Xie from the Bavarian Research Institute of Experimental Geochemistry & Geophysics (BGI) of the University of Bayreuth has succeeded for the first time in measuring the viscosity that molten solids exhibit under the pressure and temperature conditions found in the lower earth mantle. The data obtained support the assumption that a bridgmanite-enriched rock layer was formed during the early history of the earth at a depth of around 1,000 kilometres – at the border to the upper mantle.

In addition, the data also provides indications that the lower mantle contains larger reservoirs of materials that originated in an early magma ocean and have...

Im Focus: Fast rotating white dwarf drags its space-time in a cosmic dance

According to Einstein's general relativity, the rotation of a massive object produces a dragging of space-time in its vicinity. This effect has been measured, in the case of the Earth’s rotation, with satellite experiments. With the help of a radio pulsar, an international team of scientists (with important contributions from scientists at the Max Planck Institute for Radio Astronomy in Bonn, Germany) were able to detect the swirling of the space-time around its fast-rotating white dwarf-companion star, and thus confirm the theory behind the formation of this unique binary star system.

In 1999, a unique binary system was discovered with the Australian Parkes Radio Telescope in the constellation Musca (the Fly), close to the famous Southern...

Im Focus: Quantum logic spectroscopy unlocks potential of highly charged ions

Scientists from the Physikalisch-Technische Bundesanstalt (PTB) and the Max Planck Institute for Nuclear Physics (MPIK) have carried out pioneering optical measurements of highly charged ions with unprecedented precision. To do this, they isolated a single Ar¹³⁺ ion from an extremely hot plasma and brought it practically to rest inside an ion trap together with a laser-cooled, singly charged ion. Employing quantum logic spectroscopy on the ion pair, they have increased the relative precision by a factor of a hundred million over previous methods. This opens up the multitude of highly charged ions for novel atomic clocks and further avenues in the search for new physics. [Nature, 29.01.2020]

Highly charged ions are—although seemingly exotic—a very natural form of visible matter. All the matter in our sun and in all other stars is highly ionized,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Breakthrough in research into age-related macular degeneration

07.02.2020 | Life Sciences

How iron carbenes store energy from sunlight -- and why they aren't better at it

07.02.2020 | Power and Electrical Engineering

Using neutrons and X-rays to analyze the aging of lithium batteries

07.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>